Homework 1

Static Electric and Magnetic Fields

Ex 1.1: Capacitor

Two large parallel conducting plates a distance d apart are charged with a surface charge density $\pm \rho_s$, see the figure (left panel).

- a) What is the magnitude of the electric field between the plates? Ignore edge effects.
- b) What is the pressure (force per unit area) the two plates exert on each other?
- c) A sheet of dielectric material of thickness d/2 is placed between the plates, see the figure (right panel). The dielectric constant of the material is ϵ . What is the electric field between the plates, inside the dielectric and outside the dielectric?
- d) What is the potential difference between the two plates in this case?

Ex 1.2: Sphere and spherical cavity in medium of uniform polarization

Heald & Marion, ex. 1-13.

Ex 1.3: Coaxial solenoids

Consider two long coaxial solenoids that each carry a current I, but in opposite directions. The two solenoids have different turns of wire per unit length: The inner solenoid, which has radius a_1 , has n_1 turns of wire per unit length, while the outer solenoid, which has radius a_2 , has n_2 turns of wire per unit length. Find the magnetic field **B**

- a) inside the inner solenoid,
- b) between the two solenoids,
- c) outside the outer solenoid.

Neglect end corrections.

Ex 1.4: Lorentz force and Newton's 3rd law

Heald & Marion, ex. 1-29.

Ex 1.5: dipoles

Heald & Marion, ex. 1-10.

Ex 1.6: Electret

Heald & Marion, ex. 1-15.

Suggested Problems for Further Study:

Heald & Marion, ex. 1-8: Charged soap bubble (Feel free to ignore the hint)

Heald & Marion, ex. 1-20: Magnetic Field of an infinite solenoid