Homework 2

Mostly about Electric and Magnetic Multipoles

Ex 2.1: Particle moving in Magnetic Field

Heald & Marion, ex. 1-30.

Ex 2.2: Higher-order Multipole Moments

- a) The definition of the dipole moment contains a reference to the origin of the coordinate system. Show that the electric dipole moment of a system of charges is independent of the choice of origin if the system has zero net charge.
- b) If there is a net charge, show that one can choose the origin in such a way that the dipole moment is zero.
- c) Extend your observation in (a) to the quadrupole tensor. Show that the electric quadrupole tensor of a system of charges is independent of the choice of the origin if the system has zero net charge and zero electric dipole moment.
- d) Can you also extend your observation of (b): If a system of charges has zero net charge, but nonzero dipole moment, can you choose the origin such that the electric quadrupole tensor is zero?

Ex 2.3: Multipole Expansion

A charge $q_1 = 2e$ is located at the origin, and a charge $q_2 = -e$ is located at the point $\mathbf{r} = \mathbf{e}_x$, where \mathbf{e}_x is the unit vector in the x-direction.

- a) Calculate the potential Φ at the positions $\mathbf{r}_1 = r_1 \mathbf{e}_x$ and $\mathbf{r}_2 = r_2 \mathbf{e}_y$
- b) Find the first three moments of the charge distribution.
- c) Calculate the potential Φ at \mathbf{r}_1 and \mathbf{r}_2 using the first three terms of the multipole expansion. Compare your answer to (a) and discuss the difference.

Ex 2.4: Charged ring

Consider a ring of radius *a* lying in the xy-axis, with line-charge density $\rho_l = \pm \lambda$ (for the grey/black segments respectively, see below) where $\lambda = \text{const}$:

HW 2

- a) Sketch $\rho_l(\theta)$ as a function of the angle θ .
- b) Convert the discrete quadrupole formula

$$Q_{ij} = \sum_{\alpha} q_{\alpha} \left(3x'_{\alpha,i} x'_{\alpha,j} - r'^{2}_{\alpha} \delta_{ij} \right)$$

to a form suitable for this continuous charge distribution

c) Derive all elements of the quadrupole tensor Q_{ij} . *Hint:* Be sure to use symmetries, and point out which entries are trivially zero. The trig identity $\sin \theta \cos \theta = \frac{1}{2} \sin 2\theta$ may be useful.

Ex 2.5: Force on a magnetic dipole

Consider a magnetic dipole with dipole moment m.

- a) Show that there is no net force on the dipole if the dipole is placed in a spatially uniform magnetic field B.
- b) Two magnetic moments that are brought together exert a force on each other. Explain the origin of this force.

Suggested Heald & Marion problems for further study:

- 2-2: Magnetic field of the earth
- 2-6: Two-dimensional dipole*
- 2-13: Quadrupole moment
- 2-22: Gyromagnetic ratio

* Please disregard the remark on 'Cylindrical symmetry'. Usually, the words 'Cylindrical symmetry' are used for systems that have rotational symmetry around the z axis. In this case, there is translation symmetry in the z direction, but not rotation symmetry.