
Phys 3327 Fall ’11 Solutions 8

Solutions: Homework 8

Ex. 8.1: EM Waves Incident on a Conductor
Consider a conductor lying in the z > 0 half space with conductivity σm and dielectric constant ǫm, and a
dielectric in the z > 0 half space with dielectric constant ǫ. A wave E0(r, t) = E0

0e
i(kz−ωt)ex is normally

incident on the conductor, and ω ≪ σm. We also assume ǫm . 4π.

(a) First, all the results for normal incidence hold in this case, but with the refractive index of the conductor
now a complex number. The refractive index of the dielectric

n1 =
√
ǫ , (1)

and complex refractive index of the conductor

nm =

√

ǫm + i
4πσm

ω

≃ (1 + i)

√

2πσm

ω

≡ (1 + i)α−1 (2)

to leading order in ǫmω/σm. Note here α ≪ 1.

The complex magnitude of the reflected electric field E1(r, t) = E0
1e

i(kz−ωt)ex is then

E0
1

E0
0

=
nm − n1

nm + n1

=
1−√

ǫα(1 − i)/2

1 +
√
ǫα(1 − i)/2

≃
[

1−
√
ǫα(1− i)/2

]2

≃ 1−
√
ǫα(1 − i) , (3)

to leading order in α. Taking real parts then

E1(r, t) = E0
0

[

(

1−
√
ǫα

)

cos[kz − ωt]−
√
ǫα sin[kz − ωt]

]

ex . (4)

Since the reflected field propagates in the −z direction, the magnetic field B1 = −n1ez ×E1, so

B1(r, t) = −
√
ǫE0

0

[

(

1−
√
ǫα

)

cos[kz − ωt]−
√
ǫα sin[kz − ωt]

]

ey . (5)

(b) Let the transmitted wave be E2(r, t) = E0
2e

i(kmz−ωt)ex. Then

E0
2

E0
0

=
2n1

nm + n1

=

√
ǫ(1 − i)α

1 +
√
ǫα(1 − i)/2

≃
√
ǫ(1 − i)α = (1− i)

√

ǫω/2πσm (6)

to leading order. The complex wavenumber

km = nm
ω

c
=

ω

c
(1 + i)α−1 = (1 + i)

√

2πσmω/c2 ≡ (1 + i)δ−1 . (7)
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(c) The magnetic field of the transmitted wave B2 = nmez ×E2. Hence

B2(r, t) =
kmc

ω
E0

2e
i(kmz−ωt)ey , (8)

in terms of only E0
2 and km.

(d) Applying Ohm’s Law, the current density in the conductor j = σmE2. Hence,

j = σmE0
2e

i(kmz−ωt)ex . (9)

After taking real parts we have

j(r, t) = σmE0
0

√

ǫω/2πσme−z/δ
[

cos(δ−1z − ωt) + sin(δ−1z − ωt)
]

. (10)

(e) The time-averaged Poynting vector

〈S〉 = c

8π
E2 ×B∗

2

=
c

8π
e−2z/δ|E0

2 |2n∗

mez

=
ǫ

8π2

c2

δσm
(E0

0 )
2e−2z/δez

(11)

after taking the real part only. Since there are free currents flowing in the conductor, then applying
Ohm’s Law j = σmE, the energy conservation law is

∂

∂t
E +∇ · S + σmE2 = 0 . (12)

Ex. 8.2: Parallel Conducting Planes
Consider two conducting planes, located at x = 0 and x = d, so their common surface normal is ex. The
boundary condition for the two planes is

ex ×E = 0 , and ex ·B = 0 . (13)

Clearly, a TEM mode with k = kez, E = Eex and B = Bey satisfies the boundary conditions, so these
plane support TEM modes.

The proof that uniform cross-section hollow conductors do not support TEM modes depends on the conduc-
tor’s surface being closed (i.e. having no boundary) and connected. However, in the case of the two planes,
the conducting surface is clearly not connected, so we do not expect TEM modes to be forbidden.

Ex. 8.3: E & M Fields for a Transmission Line

(a) Consider a coaxial cable with inner radius a and outer radius b, with the inner conductor at a potential
V0 with respect to the outer one. As found in previous homework, in the cylindrical coordinates (r, θ, z)
the potential for a ≤ r ≤ b is

Φ(r) = −V0
ln(r/a)

ln(b/a)
, (14)

and hence the electric field

E(r) = −∇Φ(r) =
V0

ln(b/a)

er

r
. (15)
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(b) Assuming the the current I0 flows along the inner conductor in the +z direction, then by Ampère’s
Law in integral form, clearly the magnetic field for a ≤ r ≤ b is

B(r) =
2I0
c

eθ

r
. (16)

(c) Let V (z, t) = V0e
i(kz−ωt) and I(z, t) = I0e

i(kz−ωt), and Z0 = V0/I0. Consider the dynamical fields

E(r, t) =
V (z, t)

ln(b/a)

er

r
=

V0

ln(b/a)

ei(kz−ωt)

r
er (17)

B(r, t) =
2I(z, t)

c

eθ

r
=

2I0
c

ei(kz−ωt)

r
eθ . (18)

which are obtained by näively replacing V0 → V (z, t) and I0 → I(z, t). Note these fields have not been
derived from Maxwell’s equations, so the idea is to check that they satisfy the usual wave equations,
and hence are the correct fields generated by V (z, t) and I(z, t).

In the cylindrical coordinates chosen, we may write the electric field E = Er(r, z)er. Using the hint
provided, the Laplacian

∇2E = ∇
(

∇ ·E
)

−∇×
(

∇×E
)

= 0−∇×
(

∂

∂z
Er(r, z)

)

eθ

=

(

ik
∂

∂z

[

rEr(r, z)
]

)

er

r

= −k2E , (19)

noting that ∂/∂r(rEr) = 0. Hence

∇2E − 1

c2
∂2

∂t2
E = −k2E +

ω2

c2
E = 0 , (20)

provided k = ω/c, and so the electric field (17) satisfies the wave equation.

Similarly writing the magnetic field as B = Bθ(r, z)eθ, then

∇2B = ∇
(

∇ ·B
)

−∇×
(

∇×B
)

= 0+∇×
(

∂

∂z
Bθ(r, z)

)

er

=

(

ik
∂

∂z
Bθ(r, z)

)

eθ

= −k2B , (21)

noting that ∂/∂r(rBθ) = 0. Hence

∇2B − 1

c2
∂2

∂t2
B = −k2B +

ω2

c2
B = 0 , (22)

provided k = ω/c, and so the magnetic field (18) satisfies the wave equation.

(d) The time-averaged Poynting vector

〈S〉 = c

8π
E ×B∗

=
1

4π

V0I0
ln(b/a)

ez

r2
. (23)
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Hence the power transmitted through the interior cross section of the cable by the EM field is

P =

∫

S · dA

=
1

4π

V0I0
ln(b/a)

∫ 2π

0

∫ b

a

dr

r

=
V0I0
2

. (24)

Since the electric and magnetic fields outside the cable are zero, then P is the total power transmitted
down the line by the EM wave. Note that P is the same as the rms power dissipated by the impedance
Z0, which is I20Z0/2.

Ex. 8.4: Discrete Element Representation of a Transmission Line

(a) Let the nth inductor be Ln. The current running through Ln is In, and the impedance ZL = −iωL,
assuming the ladder is driven by an external sinusoidal voltage or current source ∼ e−iωt. Note that
the − sign in the exponential means that ZL is the opposite sign to the convention you may have seen

elsewhere! From the defined direction of In, the voltage drop over Ln is Vn − Vn+1, so by Ohm’s Law
(V = IZ) we have

Vn+1 − Vn = iωLIn . (25)

Similarly, let the nth capacitor be Cn, which has impedance ZC = i/(ωC) (different again by a sign
to the usual convention). Clearly the voltage drop over Cn is by definition Vn+1, and by Kirchoff’s
junction rule, the current flowing through Cn over the voltage drop is In − In+1. Hence by Ohms’ Law

In+1 − In = iωCVn+1 . (26)

(b) First, note that to discretize the ladder we define the location of the nth node of the ladder to be zn,
and let zn+1 = zn +∆z. Letting Vn = V (zn) [In = I(zn)] be the voltage at [current into] the n node,
then we have the Taylor expansions

Vn+1 = Vn +
∂V

∂z
∆z +O(∆z2) , (27)

In+1 = In +
∂I

∂z
∆z +O(∆z2) . (28)

Let the capacitance (inductance) per unit length be Cl (Ll), so C = Cl∆z and L = Ll∆z. The
recursion relation (25) then becomes

Vn+1 − Vn

∆z
= iωInLl = −∂I

∂t
(zn)Ll . (29)

since I ∼ e−iωt. But in the limit of a continuous transmission line, ∆z → 0, clearly from (27)
(Vn+1 − Vn)/∆z → ∂V/∂z. Hence

∂V

∂z
= −∂I

∂t
Ll . (30)

Similarly, we find from (26) and (28) that

∂I

∂z
= −∂V

∂t
Cl . (31)
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(c) The impedance of the ladder may be expressed as a repeating continued fraction, so adding an extra
ladder element to the infinite ladder does not change its limiting impedance, assuming that such limit
exists. Hence, consider the impedance of the circuit shown, in which an extra ladder element is added
to the ladder.

Since Z is the impendance of an infinite ladder, then it is unchanged by the addition of the element,
so it follows that

Z = ZL +
ZCZ

ZC + Z
, (32)

as ZL is in series with the parallel combination of ZC and Z. Hence Z satisfies

Z2 − ZLZ − ZLZC = 0 (33)

which has solution

Z =
1

2

(

ZL ±
√

Z2
L + 4ZLZC

)

. (34)

Now, ZL = −iωLl∆z, and ZC = i(ωCl∆z), so in the limit ∆z → 0 only the ZLZC term survives.
Hence for the continuum limit ∆z → 0,

Z →
√

Ll/Cl . (35)

(d) If a resistance R = Rl∆z is added in series with the inductor, the the impedance ZL = −iωL+R. The
recursion relation (25) then becomes

Vn+1 − Vn = (iωL−R)In , (36)

and (26) remains the same.

In the continuum limit, the differential equations are then modified to be

∂V

∂z
= −∂I

∂t

(

Ll + iRl/ω
)

,
∂I

∂z
= −∂V

∂t
Cl , (37)

which may be rewritten as

∂2V

∂z2
−
(

Ll + iRl/ω
)

Cl
∂2V

∂t2
= 0 ,

∂2I

∂z2
−
(

Ll + iRl/ω
)

Cl
∂2I

∂t2
= 0 (38)

The solution to these are V (z, t) = V0e
i(kz−ωt) and I(z, t) = I0e

i(kz−ωt), with dispersion relation

k =
√

Cl

(

ω2Ll + iωR) . (39)

Note that k is complex, so that I and V are exponentially suppressed - or damped - in the z direction, as
expected.
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