b) A couple of Math results.

\[\oint_S \mathbf{v} \cdot \mathbf{A}(\mathbf{r}') = 0 \]

\[\oint_S \mathbf{v} \cdot \left\{ \mathbf{J}(\mathbf{r}) \left(\mathbf{r} \cdot \mathbf{A} \right) + \mathbf{v} \left(\mathbf{A}(\mathbf{r}') \cdot \mathbf{v} \right) \right\} = 0 \quad \text{for any } \mathbf{v} \]

Use a "physicist's proof."

Write \[\mathbf{J}(\mathbf{r}) = \alpha_x \frac{d}{dt} \mathbf{r}_x \]

\[\oint_S \mathbf{v} \cdot \left\{ \mathbf{J}(\mathbf{r}) \left(\mathbf{r}_x \cdot \mathbf{v} \right) + \mathbf{v} \left(\mathbf{A}(\mathbf{r}') \cdot \mathbf{v} \right) \right\} = 0 \quad \text{for stationary currents} \]

Currents have no end or beginning so an integral over a current loop gives zero just as much current flowing in one direction as in the other.

\[\oint_S \mathbf{v} \cdot \left\{ \mathbf{J}(\mathbf{r}) \left(\mathbf{r}_x \cdot \mathbf{v} \right) + \mathbf{v} \left(\mathbf{A}(\mathbf{r}') \cdot \mathbf{v} \right) \right\} = 0 \quad \text{for stationary currents} \]

Same reasoning, integral over a current loop gives zero.

\[\mathbf{A}(\mathbf{r}) = \mathbf{A}_i(\mathbf{r}) + \mathbf{A}_m(\mathbf{r}) + \ldots \]

\[\mathbf{A}_i(\mathbf{r}) = \frac{1}{c} \left[\oint_S \mathbf{v} \cdot \mathbf{J}(\mathbf{r}') \right] \frac{1}{r} = 0 \quad \text{by (1) no monopole field} \]

\[\mathbf{A}_m(\mathbf{r}) = -\frac{1}{c} \left[\oint_S \mathbf{v} \cdot \mathbf{J}(\mathbf{r}') \right] \frac{1}{r} = \frac{1}{c} \oint_S \mathbf{v} \cdot \mathbf{J}(\mathbf{r}') \frac{1}{r} \cdot \mathbf{v} \frac{1}{r} \]

\[= -\frac{1}{ac} \oint_S \left[\mathbf{J}(\mathbf{r}) \left(\mathbf{r} \cdot \mathbf{A} \right) - \mathbf{v} \left(\mathbf{A}(\mathbf{r}') \cdot \mathbf{v} \right) \right] \]

\[-\frac{1}{ac} \oint_S \left[\mathbf{J}(\mathbf{r}) \left(\mathbf{r} \cdot \mathbf{A} \right) + \mathbf{v} \left(\mathbf{A}(\mathbf{r}') \cdot \mathbf{v} \right) \right] \]
\[A^2(\vec{r}) = -\frac{1}{2c^2} \oint \vec{v} \cdot (\hat{\vec{r}'} \times \hat{\vec{f}}(\vec{r}')) \times \hat{\vec{v}} \frac{1}{r} \]

where we used
\[\vec{A} \times \vec{B} = (\vec{A} \cdot \vec{c})\vec{B} - (\vec{B} \cdot \vec{c})\vec{A} \]

BAC CAB rule

\[\vec{m} = \frac{I}{c} \hat{\vec{r}} \]

Problem 2-21 asks you to verify that this is consistent with our prior definition of \(\vec{m} = \frac{I}{c} \hat{\vec{r}} \).

\[\vec{A}(\vec{r}) = \vec{m} \times \hat{\vec{r}} = \frac{\vec{m} \times \hat{\vec{r}}}{r^3} \]

Vector potential of magnetic dipole

\[\vec{r} \times \hat{\vec{f}}(\vec{r}) = \text{vector in } \vec{E} \text{ direction} \]

\[\vec{B}^{(2)} = \vec{\nabla} \times \vec{A}^{(2)} \]

\[= \vec{\nabla} \times \left(\frac{\vec{m} \times \hat{\vec{r}}}{r^3} \right) = \left(\frac{\vec{\nabla} \cdot \hat{\vec{r}}}{r^3} \right) \times \left(\vec{m} \times \hat{\vec{r}} \right) + \frac{1}{r^3} \vec{\nabla} \times \left(\vec{m} \times \hat{\vec{r}} \right) \]

\[= \vec{m} \cdot \left(\left(\frac{\vec{\nabla} \cdot \hat{\vec{r}}}{r^3} \right) \vec{r} - \left(\frac{\vec{\nabla} \times \hat{\vec{r}}}{r^3} \right) \vec{r} \right) \]

\[+ \frac{1}{r^3} \left(\vec{m} \times \left(\hat{\vec{r}} \times \hat{\vec{r}} \right) - \left(\vec{m} \cdot \hat{\vec{r}} \right) \vec{r} \right) \]

\[= -\frac{\vec{m}}{r^3} \left(3 \frac{\vec{r} \cdot \vec{v}}{r^5} + \frac{3 \vec{r} \cdot \vec{m}}{r^5} + \frac{1}{r^3} \frac{3 \vec{m} - \frac{1}{r^3} \vec{m}}{r^3} \right) \]

\[\vec{B}^{(2)} = \frac{1}{r^5} \left(3 \vec{m} \cdot \hat{\vec{r}} \vec{r} - \vec{m} r^2 \right) \]

This is the same field that we got for the electric field of an electric dipole!

Again: This formula only applies far away from the current distribution. "Inside" the dipole the fields of magnetic & electric dipoles look very different.

[Diagram of electric field lines] vs. [Diagram of magnetic field lines]
Poisson & Laplace (History of the two people)

\[\nabla^2 \Phi = \Delta \Phi = -4\pi G \] (Poisson)

\[\nabla^2 \phi = \Delta \phi = 0 \] (Laplace)

Solutions to Laplace's eq. are called harmonic functions.

a) Definition of the problem:
 - Finite volume \(V \)
 - Boundary: Closed surface \(S \) with outward normal \(\hat{n} \)
 - No change inside \(V \) \(\Rightarrow \Delta \Phi = 0 \)
 - On boundary either \(\Phi \) is prescribed
 or "mixed" (parts of \(S \) \(\Phi \) is prescribed, other parts \(\hat{n} \cdot \nabla \Phi \) is prescribed)

b) Properties of \(\Phi \)
 1. Superposition: \(\Phi_1, \Phi_2 \) are solutions of Laplace eq.
 with different b.c. (but of the same type), then
 \(a \Phi_1 + b \Phi_2 \) is also a solution, but with suitably modified b.c.

 2. Uniqueness: \(\Phi_1, \Phi_2 \) are solutions of Laplace's eq.
 with the same b.c. Then \(\Phi_1 - \Phi_2 = \text{const} \)
 (\(\text{Const} = 0 \) unless \(\hat{n} \cdot \Phi \) is prescribed on all of \(S \))

 If we find one solution regardless of method we've done.
3. Smoothing Φ has no minima or maxima inside Ω.

Proof 1: Laplace's equation is linear.

Proof 2: $\Phi - \Phi_1$ satisfies Laplace's eq. with "null b.c." either $\Phi = 0$ or on $\partial \Omega$, $n \cdot \nabla \Phi = 0$.

Look at $\iint_S da \Phi (n \cdot \nabla \Phi) = 0$

$= \iint_S da \ n \cdot (\nabla \Phi)$

$= \iiint_V n \cdot (\nabla \Phi)$

$= \iiint_V (|\nabla \Phi|^2 + \Phi \nabla^2 \Phi)$

$= \iiint_V |\nabla \Phi|^2 = 0$

Since $|\nabla \Phi|^2$ is not negative, $\nabla \Phi = 0$ & $\Phi = \text{const.}$

Proof of 3: If Φ has a maximum, then there exists a surface S around the point where Φ has a maximum such that $n \cdot \nabla \Phi < 0$ on S. This means Φ decreases on S.

Contradiction: $0 > \iint_S da \ n \cdot \nabla \Phi = \iiint_V n \cdot \nabla \Phi = 0$ since Φ is no change.

So minimum $0 < \ldots \ldots = 0$

So how do we solve this eq?

Laplace eq. in rectangular cords

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$$

There are mathematical theories that explain why the strategy we take here works. As physicists all we care about is that we found the solution.

We will take a pragmatic approach:

a) First find a general solution irrespective of boundary condition

b) Match the solution to the b.c.
Separation of Variables

Look for a form \(\Phi = X(x)Y(y)Z(z) \)

\[\Delta \Phi = \nabla^2 \Phi = \frac{\partial^2 X}{\partial x^2} + X \frac{\partial^2 Y}{\partial y^2} + X Y \frac{\partial^2 Z}{\partial z^2} = 0 \]

Divide by \(\Phi = X Y Z \)

\[\frac{1}{X} \frac{\partial^2 X}{\partial x^2} + \frac{1}{Y} \frac{\partial^2 Y}{\partial y^2} + \frac{1}{Z} \frac{\partial^2 Z}{\partial z^2} = 0 \]

Each of these terms must be a constant since the functions are independent.

\[\frac{1}{X} \frac{\partial^2 X}{\partial x^2} = \lambda^2 \quad \text{or} \quad \frac{\partial^2 X}{\partial x^2} = \lambda^2 X \]

where \(\lambda^2 + \beta^2 + \gamma^2 \neq 0 \)

This means \(\lambda, \beta, \gamma \) can't all be real. \#5

\[\frac{\partial^2 Y}{\partial y^2} = \beta^2 Y \]

\[\frac{\partial^2 Z}{\partial z^2} = \gamma^2 Z \]

One or two must be imaginary.

Solutions are exponential functions

\[X(x) = e^{\alpha x} \quad \text{or} \quad (\cosh \alpha x, \sinh \alpha x, e^{-\alpha x}, \text{etc.}) \]

\[Y(y) = e^{\beta y} \]

\[Z(z) = e^{\gamma z} \]

General solution is:

\[\Phi(x,y,z) = \sum A_{\alpha \beta \gamma} e^{\alpha x + \beta y + \gamma z} \]

Ex:

Square metal pipe with walls held at \(\Phi = 0 \)

Capped by a plate at \(x = 0 \) held at \(\Phi = \Phi_0 \)

Note: Plate is separated by a small gap

What is \(\Phi \) inside the pipe?
Deal w/ boundary conditions first.

Choose \(\bar{\Omega}(r) \) such that \(\bar{\Omega}(a) = \bar{\Omega}(a) = 0 \)

\[
\bar{\Omega}(r) = \sin \frac{\pi r a}{a}
\]

Choose \(\bar{\zeta}(z) \) such that \(\bar{\zeta}(0) = \bar{\zeta}(a) = 0 \)

\[
\bar{\zeta}(z) = \sin \frac{\pi z a}{a}
\]

\(X(x) \) must go to 0 as \(x \to \infty \)

\[
X(x) = e^{-\alpha x}
\]

\[
\left(\frac{\pi r a}{a} \right)^2 + \left(\frac{\pi z a}{a} \right)^2 + \alpha^2 = 0 \quad \alpha_{rs} = \frac{\pi}{a} \sqrt{r^2 + s^2}
\]

\[
\bar{\Omega}(x, y, z) = \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \alpha_{rs} e^{-\alpha x} \sin \frac{\pi r a}{a} \sin \frac{\pi z a}{a}
\]

What about boundary conditions at \(x = 0 \)

\[
\bar{\Omega}(0, y, z) = \bar{\Omega}_0 = \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \alpha_{rs} \bar{f}_{rs}(y, z)
\]

The functions \(\bar{f}_{rs}(y, z) \) are complete and orthogonal on \(0 \leq y, z \leq a \)

Completeness: Any function \(F(y, z) \) can be written as a linear combination of the \(\bar{f}_{rs} \) functions

Orthogonality: \[
\int_0^a \int_0^a \bar{f}_{rs}(y, z) \bar{f}_{r's'}(y, z) \, dy \, dz = \delta_{rr'} \delta_{ss'} \alpha_{rs}
\]

\[
\alpha_{rs} = \frac{a^2}{4} \text{ for our functions } \bar{f}_{rs}
\]

This is not a coincidence. This is a general property of solutions of differential equations of the type.
we considered, with null boundary conditions
"Sturm-Liouville Problem"
Completeness guarantees that suitable coefficients exist
\[\Phi_0 = \sum_{r,s=1}^{\infty} a_r s_r(y,z) = \Phi(0,y,z) \]
Orthogonality gives a quick way to find them
\[\int_0^a dydz \Phi(0,y,z) s_{r,s}(y,z) = \sum_{r,s=1}^{\infty} \int_0^a dydz a_r s_{r,s}(y,z) s_{r,s}(y,z) = \]
\[= a_r s_{r,s}^2 = a_r^2 \]
but we also have
\[\int_0^a dydz \Phi(0,y,z) s_{r,s}(y,z) = \int_0^a dydz \Phi_0 \sin \frac{\pi yr}{a} \sin \frac{\pi zr}{a} \]
\[= \begin{cases} \frac{2a}{\pi r} \frac{2a}{\pi s} & \text{if } r', s' \text{ odd} \\ 0 & \text{otherwise} \end{cases} \]
\[a_r = \begin{cases} \frac{16 \Phi_0}{\pi^2 rs} & \text{if } r', s' \text{ odd} \\ 0 & \text{otherwise} \end{cases} \]
\[\Phi(x,y,z) = \sum_{r,s=1}^{\infty} \frac{16 \Phi_0}{\pi^2 rs} e^{-\frac{\pi x}{a} \sqrt{r^2 + s^2}} \sin \frac{\pi yr}{a} \sin \frac{\pi zr}{a} \]
for \(x \gg a \) \(\Phi \) dominated by \(r=s=1 \) term
\[\Phi(x,y,z) \approx \frac{16 \Phi_0}{\pi^2} \sin \frac{\pi yr}{a} \sin \frac{\pi zr}{a} e^{-\frac{\pi x}{a} \sqrt{1}} \]
Again our Strategy

* Find Special Solutions using separation of variables
* General solution will be a superposition of the special solutions
* Match solution to boundary condition
* Use completeness & orthogonality of special solutions

For rectangular co-ords:
\[\Phi(x, y, z) = \sum \lambda_{\alpha\beta\gamma} e^{\alpha x + \beta y + \gamma z} \]

\[\alpha, \beta, \gamma \geq 0 \]
\[\alpha, \beta, \gamma \text{ one or two real & the other imaginary} \]

Laplace Eq for Spherical Coords r, \(\theta \), \(\phi \)

a) \[\nabla^2 \Phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0 \]

b) Separation of variables
\[\Phi(r, \theta, \phi) = R(r) P(\theta) Q(\phi) \]
\[\frac{1}{\Phi} \nabla^2 \Phi = 0 \]

\[\frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{1}{P \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dP}{d\theta} \right) + \frac{1}{Q \sin^2 \theta} \frac{d^2Q}{d\phi^2} = 0 \]

c) Multiply by \(r^2 \sin^2 \theta \)
\[\frac{\sin^2 \theta}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{\sin \theta}{P} \frac{d}{d\theta} \left(\sin \theta \frac{dP}{d\theta} \right) + \frac{1}{Q \sin^2 \theta} \frac{d^2Q}{d\phi^2} = 0 \]

\[\frac{1}{Q} \frac{d^2Q}{d\phi^2} = \text{constant} = -m^2 \]

\[Q(\phi) = e^{i m \phi} \text{ since } Q(\phi) = Q(\phi + 2\pi) \]

\[m = 0, \pm 1, \pm 2 \]
d) Return to (b) but now divide by \(r^2 \)

\[
\frac{1}{R} \frac{d}{dr} \left(R^2 \frac{dr}{dr} \right) + \frac{1}{\rho \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d \rho}{d\theta} \right) \frac{m^2}{\sin \theta} = 0
\]

\[\text{constant} \quad \ell (l+1) \]

\[\text{constant} \quad \ell (l+1) = -\ell (l+1) \]

\[
\frac{d}{dr} \left(R^2 \frac{dr}{dr} \right) - \ell (l+1) R = 0
\]

\[
\frac{1}{\sin \theta} \frac{d}{d\theta} \sin \theta \frac{d \rho}{d\theta} - \frac{m^2 \rho}{\sin \theta} + \ell (l+1) \rho = 0
\]

e) Solve for \(R \):

we try \(R(r) = r^x \) \(\alpha = l \alpha - l - 1 \)

\[
R_e(r) = A e^l + B e^{-l-1}
\]

Note: if origin is part of the volume where \(\nabla \Phi \) is being solved then \(B = 0 \) otherwise \(A e^l \) or \(B e^{-l-1} \) may represent

f) Solve eq for \(\rho \)

Make variable change \(\rho \Phi \to x \)

\[
\frac{1}{\sin \theta} \frac{d}{d\theta} \sin \theta \frac{d \rho}{d\theta} \Rightarrow \frac{d}{dx}
\]

\[\frac{d}{dx} \left(\left(1-x^2 \right) \frac{d \rho}{dx} \right) + \left[\ell (l+1) - \frac{m^2}{1-x^2} \right] \rho = 0
\]

First lets solve for \(m = 0 \) axial symmetry no dependence on \(\theta \)

Solutions are the Legendre polynomials

Then we will discuss the case for arbitrary \(m \)

Solutions are the Spherical Harmonics
The Legendre Polynomial

a) Rewrite equation for \(P \)
\[
(1-x^2)\frac{d^2}{dx^2}P - 2x \frac{d}{dx}P + l(l+1)P = 0
\]
Legendre's Eq.

Method for solving this eq.

- **Ansatz:** \(P \) is a power series in \(x \)
- **Require Convergence for** \(-1 \leq x \leq 1\)

 we will find that convergence occurs only if

 power series breaks off & \(P \) becomes a polynomial in \(x \)
- **Degree of polynomial will be** \(l \)

"Legendre polynomial of order \(l \)" \(P_l(x) \)

Ansatz: \(P(x) = \sum_{n=0}^{\infty} a_n x^n \)

plug into eq.

\[
(1-x^2)\sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} - 2x \sum_{n=0}^{\infty} n a_n x^{n-1} + l(l+1)\sum_{n=0}^{\infty} a_n x^n = 0
\]

Collect all equal powers & solve for the coefficients \(a_n \)

\[
a_n \sum_{n=0}^{\infty} l(l+1) - n(n-1) - 2 n^2 + (n+2)(n+1) a_{n+2} = 0
\]

\[
a_{n+2} = \frac{a_n (l(l+1) - n(n+1))}{(n+1)(n+2)}
\]

Generally \(\frac{a_{n+2}}{a_n} \to -1 \) if \(n \to \infty \)

Note: This power series does not converge for \(x = \pm 1 \)

Unless \(l \) is an integer, then series terminates when \(n = l \) since \(a_n = 0 \) for all \(n > l \)

Solution w/ integer \(l \) is denoted \(P_l(x) \) & is a polynomial

of degree \(l \)
b) Properties of Legendre Polynomials

1) If \(l \) is even all \(\text{Legendre} \) \(n \) odd or zero:
\[
P(-x) = (-1)^l P(x)
\]

2) To normalize for all order \(P_0(1) = 1 \)

3) Complete orthogonal set on \(-1 \leq x \leq 1\):
\[
\int_{-1}^{1} dx P_l(x) P_m(x) = \int_{-1}^{1} \frac{dx}{2l+1}
\]

4) \(P_0(x) = 1 \)
\(P_1(x) = x \)
\(P_2(x) = \frac{1}{2} (3x^2 - 1) \)
\(P_3(x) = \frac{1}{2} (5x^3 - 3x) \)
\(P_4(x) = \frac{1}{8} (35x^4 - 30x^2 + 3) \)
\(P_5(x) = \frac{1}{8} (63x^5 - 70x^3 + 15x) \)

5) Rodrigues' formula
\[
P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l
\]

6) Generating function
\[
F(x, \mu) = \frac{1}{(1 - 2x \mu + \mu^2)^{1/2}} = \sum_{l=0}^{\infty} \mu^l P_l(x)
\]

IE: expanding as a power series in \(\mu \), coefficients are polynomials in \(\mu \)
Recursion relations

\[(l+1) P_{l+1}(x) = (2l+1) x P_l(x) - l P_l(x)\]

\[(1-x^2) \frac{d P_l}{d x} = -lx P_l(x) + l P_{l-1}(x)\]

Summary: General solution of Laplace's eq w/ axial symmetry

\[\Phi(r, \theta) = \sum_{l=0}^{\infty} \left(A_l r^l + B_l \frac{1}{r^{l+1}} \right) P_l(\cos \theta)\]

Fix \(A_l, B_l\) using boundary conditions

Note: if \(\Phi\) is continuous at \(r=0\) \(B_l=0\)

For \(\Phi\) corresponding to localized source \(A_l=0\)

Note: Similar to multipole expansion. Same \(l\) dependence

For given order in expansion \(B_0=\) monopole, \(B_1=\) dipole, etc.

Spherical Harmonics \(m \neq 0\)

\[\frac{d}{dx} \left((1-x^2) \frac{d P_l}{d x} \right) + (l(l+1) - \frac{m^2}{1-x^2}) P_l = 0\]

Solutions are called "associated Legendre functions"

\[P_l^m(x) = (-1)^m \frac{(1-x^2)^{\frac{m}{2}}}{2^l l!} \frac{d^{l+m}}{dx^{l+m}} (x^2-1)^l, \quad m=0, \pm 1, \pm 2, \ldots \pm l\]

* Orthogonality: \[\int_{-1}^{1} dx P_l^m(x) P_l^{m'}(x) = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{mm'}\]

* Together with \(P_l^0\), the associated Legendre functions are complete on \(0 \leq \theta \leq \pi, \ 0 \leq \phi \leq 2\pi\)

Spherical Harmonics:

\[Y_l^m(\theta, \phi) = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(\cos \theta) e^{im\phi}\]
\[\int_0^{2\pi} \int_0^\pi Y_{lm}^* (\theta, \phi) \, r^2 \sin \theta \, dr \, d\theta = \delta_{lm} \delta_{m^*} \]

\[Y_0^0 (\theta, \phi) = \frac{1}{\sqrt{4\pi}} \]

\[Y_1^0 (\theta, \phi) = \frac{\sqrt{3}}{\sqrt{4\pi}} \cos \theta \]

\[Y_{\pm 1}^1 (\theta, \phi) = \frac{\sqrt{3}}{2\sqrt{4\pi}} \sin \theta \exp \pm i\phi \]

\[\Rightarrow \Psi (r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (A_e^m r^l + B_e^m \frac{1}{r^{l+1}}) Y_{lm} (\theta, \phi) \]

Review & Examples

1) Laplace's equation for spherical polar coordinates \((r, \theta, \phi)\)

\[\Delta \Phi = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right) + \frac{1}{r^2 \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Phi}{d\theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{d^2 \Phi}{d\phi^2} \]

a) Find a special solution of the form

\[\Phi (r, \theta, \phi) = R(r) \, P(\cos \phi) \, Q(\theta) \]

\[Q_m (\theta) = \exp \pm im \phi \quad m = 0, \pm 1, \pm 2, \ldots \]

\[R_l (r) = r^l \cos \frac{1}{r^{l+1}} \quad l = m, m+1, \ldots \]

\[P \text{ satisfies} \quad (1-x^2) \frac{d^2 P}{dx^2} + (l(l+1) - \frac{m^2}{1-x^2}) P = 0 \]

If \(m = 0 \)

\[P = P_l (\cos \phi) \quad l^{th} \text{ Legendre polynomial} \]

\[P_l (x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l \]
b) General Solution for $m=0$ Case (no ϕ dependence)

$$\Phi(r, \theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

- P_l are complete & orthogonal on $-1 \leq \cos \theta \leq 1$

$$\int_{-1}^{1} P_l(\cos \theta) P_m(\cos \theta) \, d\cos \theta = \delta_{lm} \frac{2}{2l+1}$$

- $P_0 \cos \theta = 1$
- $P_1 \sin \theta = \cos \theta$
- $P_2 \cos \theta = \frac{1}{2} (3 \cos^2 \theta - 1)$

Note similarity to multipole expansion. Some angular dependence for a given order in the expansion.

A_l are zero for a localized source.

C_l is $m \neq 0$, we need spherical harmonics.

Examples:
1) Conducting sphere of radius a in uniform electric field

Sphere alters the field locally but far from sphere we expect no change. Find \vec{E} field everywhere.

$$\vec{E} = \vec{E}_0 \hat{r}_2$$

- Axial Symmetry means $m=0$

$$\Phi(r, \theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

b) For $r \to \infty$ $\vec{E} = E_0 \hat{r}$ $\Phi = -E_0 \hat{r}$ $=-E_0 r \cos \theta$
Comparing w/ expansions

\[A_l = 0 \text{ if } l \neq 1 \quad A_1 = -E_0 \]

So \[\Phi(r, \theta) = \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos \theta) - E_0 r \cos \theta \]

(c) Match \(B \) using boundary conditions at sphere.

\(\Phi \) is constant at \(r = a \) let make it \(\Phi = 0 \) (far E-field outside)

use orthogonality of the \(P_l \) to find \(B_l \)

\[\Phi(a, \theta) = -E_0 a P_1 + \sum_{l=0}^{\infty} \frac{B_l}{a^{l+1}} P_l = 0 \]

\[E_0 a \int_0^1 P_1(x) P_l(x) dx = \sum_{l=0}^{\infty} \frac{B_l}{a^{l+1}} \int_0^1 P_l P_l(x) dx \]

\[E_0 a \frac{2}{2l+1} \delta_{l1} = \frac{B_l}{a^{l+1}} \frac{2}{2l+1} \]

\[B_l = E_0 a (l+2) \delta_{l1} \quad B_1 = E_0 a^3 \quad B_{l+1} = 0 \]

\[\Phi(r, \theta) = -E_0 (1 - \frac{a^3}{r^3}) r \cos \theta \]

(d) **Short Cut**

Field is \(\perp \) to sphere since sphere is a conductor.

Changes form a dipole — guess that only \(l = 1 \) contributes.

match \(B \), using b.c. Verify b.c. are met small \(\theta \)

\& invoke uniqueness to ensure you have the solution.

e) Electric field inside sphere \(\vec{E} = 0 \)

outside \[\begin{cases} E_r = -\frac{1}{r} \frac{\partial \Phi}{\partial r} = E_0 \left(1 + \frac{2a^3}{r^3} \right) \cos \theta \\ E_\theta = -\frac{1}{r} \frac{\partial \Phi}{\partial \theta} = -E_0 \left(1 - \frac{a^3}{r^3} \right) \sin \theta \end{cases} \]

note as \(r = a \)

\[E_0 = 0 \]
Surface charge density is \(E_r(r=a) = 4\pi \sigma \).

\[\text{used} \ (E_2 E_2 - E_1 E_1) \cdot \mathbf{n} = 4\pi \sigma, \quad \sigma = \frac{3}{4\pi} E_0 \rho_\text{ind} \]

So the field inside sphere is zero \(\rho = E_2 = 1 \)

\[
\Phi = -E_0 r \cos \theta + \frac{E_0 a^3 \rho_\text{ind}}{r^2} \quad r > a
\]

\[\text{External Contribution} \]
\[\text{Local induced Contribution} \]

\(\Phi \) induced is just the dipole potential with \(P = E_0 a^3 \).

Ex 2 Let's repeat this for a dielectric sphere

a) Axial symmetry \(\Rightarrow \Phi(r, \theta) = \frac{2}{\varepsilon_0} (\alpha r^2 + \beta \frac{1}{r^2+1}) \rho_\text{ind}(r, \theta) \)

b) for \(r \to a \) \(E = E_0 e_z \Rightarrow \Phi = -E_0 e_z = -E_0 r \cos \theta \)

c) Guess: need \(l = 1 \) only

\(r > a \): \(\Phi(r, \theta) = -E_0 r \cos \theta + \frac{B_1 \cos \theta}{r^2} \)

This time dipole will not entirely cancel field inside.

\(r < a \): \(\Phi(r, \theta) = A_1 r \cos \theta \)

Here we have assumed that the applied field does not lead to a charge density inside the sphere (i.e. polarization of sphere is uniform). Otherwise \(\Phi \) does not obey the Laplace eq. for \(r < a \)

b.c. at \(r = a \)

- \(D_z = D_r \) continuous
- \(E_z = E_x \) continuous
- \(\Phi \) continuous

\(\Phi \) at \(a \)

\[-E_0 a \cos \theta + B_1 \cos \theta = A_1 a \cos \theta \]

\(\Phi \) continuous end-vec. \(E_z \), continuous.