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1.3 Birthday Problem

Suppose there are N people in a room. What is the probability that at least two
of them share the same birthday - the same day of the same month?

It’s easiest to begin by calculating the probability p(N) that N people in a room all have
different birthdays. The probability of at least two people having the same birthday is
then 1 − p(N). Assuming that birthdays are evenly distributed throughout the year, the
probability that, in some arbitrary order, the second person in the room does not have the
same birthday as the first is given by 364/365. The probability that a third person does not
share a birthday with the first two is then 363/365. Continuing in this vein, we find

p(N) =
364

365
× 363

365
× . . .× 365−N + 1

365
=

365!

365N(365−N)!

1.4 Russian Roulette

Reif §1.5: In the game of Russian roulette, one inserts a single cartridge into
the drum of a revolver, leaving the other five chambers of the drum empty. One
then spins the drum, aims at one’s head and pulls the trigger.

(a) What is the probability of still being alive after playing the game N times?

(b) What is the probability of surviving (N − 1) turns in this game and then
being shot the N th time on pulls the trigger?

(c) What is the mean number of times a player gets the opportunity of pulling
the trigger in this macabre game?

(a) The probability of surviving one round of the game is 5/6. Assuming that the chamber
is re-spun after each round, the probability of surviving N rounds is then (5/6)N .

(b) The probability of dying immediately after having survived some number of turns is
1/6, so the probability of dying on the N th turn is (1/6)(5/6)N−1.
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(c) To find the mean number of turns one can play before death, we compute the sum
∑

n np(n), with p(n) the probability of the game lasting exactly n turns.

n̄ =
∞
∑

n=1

n

(

1

6

)(

5

6

)n−1

Using the derivative trick we note that
∑

n nq
n−1 = d

dq

∑

n q
n. Also noting that the

sum of a geometric series is given by
∑

n q
n = 1

1−q
, we find

∞
∑

n=1

n

(

1

6

)(

5

6

)n−1

=
1

6
· d

dq

(

1

1− q

)

q=5/6

=
1

6
· 1

(1− 5/6)2
= 6

1.5 1-D Random Walk

Reif §1.6: Consider the random walk problem with p = q and let m = n1 − n2

denote the net displacement to the right. After a total number of steps, calculate
the following mean values: m,m2, m3, m4.

From the text (§1.4.1) we have the probability of a number of steps n1 to the right, and
a number of steps n2 = N − n1 to the left as

W (n1) =
N !

n1!(N − n1)!
pn1qN−n1

First we note that by the binomial theorem

N
∑

n1=0

W (n1) = (p+ q)N = 1

Thus we have for any function f(n1)

f(n1) =

∑N
n1=0

W (n1)f(n1)
∑N

n1=0
W (n1)

=
N
∑

n1=0

f(n1)W (n1)
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For the mean displacement m we have

m = n1 − n2

=

N
∑

n1=0

(n1 − n2)W (n1)

=

N
∑

n1=0

(

p
∂

∂p
− q

∂

∂q

)

W (n1)

=

(

p
∂

∂p
− q

∂

∂q

) N
∑

n1=0

W (n1)

=

(

p
∂

∂p
− q

∂

∂q

)

(p + q)N

Taking these derivatives and with p = q = 1/2 we see:

m = pN(p+ q)N−1 − qN(p+ q)N−1 = N(p+ q)N−1(p− q)

which gives m = 0.
Similarly we have for the mean square displacement m2 we have

m2 =

N
∑

n1=0

(n1 − n2)
2W (n1)

=

(

p
∂

∂p
− q

∂

∂q

)2 N
∑

n1=0

W (n1)

=

(

p
∂

∂p
− q

∂

∂q

)

(N(p + q)n−1(p− q))

= pN(p+ q)N−1 + pN(N − 1)(p+ q)N−2(p− q)

−qN(N − 1)(p+ 1)N−2(p− q) + qN(p + q)N−1.

Simplifying we see the suggestive form:

m2 = N(p+ q)N +N(N − 1)(p+ q)N−2(p− q)2

= N
∑

W (n1) +N(N − 1)(p+ q)N−2(p− q)2.

Setting p = q = 1/2 gives m2 = N
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For m3 we can similarly construct:

m3 = (n1 − n2)3

=

N
∑

n1=0

(n1 − n2)
3W (n1)

=

(

p
∂

∂p
− q

∂

∂q

)3 N
∑

n1=0

W (n1)

=

(

p
∂

∂p
− q

∂

∂q

)

m2

=

(

p
∂

∂p
− q

∂

∂q

)

[N
∑

W (n1) +N(N − 1)(p+ q)N−2(p− q)2]

= N2(p+ q)N−1(p− q)

+N(N − 1)(N − 2)(p+ q)N−3(p− q)3

+2N(N − 1)(p+ q)N−1(p− q)

= [N + 2(N − 1)]m+N(N − 1)(N − 2)(p+ q)N−3(p− q)3

where we’ve rewritten the expression in terms of m in order to simplify the computation for

higher order powers. Applying p = q = 1/2 again we see m3 = 0 .
Finally for m4 we have

m4 =

(

p
∂

∂p
− q

∂

∂q

)

m3

=

(

p
∂

∂p
− q

∂

∂q

)

[(3N − 2)m+N(N − 1)(N − 2)(p+ q)N−3(p− q)3]

= (3N − 2)m2 + 3N(N − 1)(N − 2)(p+ q)N−2(p− q)2

+N(N − 1)(N − 2)(N − 3)(p+ q)N−4(p− q)4

Note that we can reduce m4 further in terms of the previous mean values by utilizing the
relation N(N − 1)(p+ q)N−2(p− q)2 = m2 −N

∑

W (n1). This makes it easier to determine
the mean of higher order powers of the net displacement.

m4 = (6N − 8)m2 − (3N − 6)N
∑

W (n1) +N(N − 1)(N − 2)(N − 3)(p+ q)N−4(p− q)4

Evaluating with p = q = 1/2 we get

m4 = (3N − 2)N

✷
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1.6 Alternative Analysis of the 1-D Random Walk

In lecture and in the text, we evaluated the probability distribution for taking
n+ of N total steps in the +x direction PN(n+) and, by substituting m = 2n+ −
N , the distribution of the net number of steps m in +x direction. Using this
distribution, we calculated the mean number of steps and the standard deviation.

Another approach is to consider the probability distribution of the individual
steps, as follows. Assume that all steps have the same length l, and that the
probability of taking steps in the +x and x directions are p and q, respectively.

(a) Sketch the probability distribution of a single step si versus x. Does this cor-
respond to any of the standard probability distributions we have considered
so far?

(b) What are the mean and standard deviation of the distribution of si?

(c) The total displacement xN = ml after N steps can be expressed as a sum of
N statistically independent random variables si. Evaluate the mean number
of steps taken in the +x direction. (Hint: What is the mean of a sum of
independent random variables?)

(d) Evaluate the standard deviation ofm. (Hint: What is the mean of a product
of statistically independent random variables?)

(e) Similarly, evaluate the expectation value of m3 and m4. Compare your
answers with the previous question.

(f) Arguing based upon the Central Limit Theorem, what would you expect
the probability distribution of m to look like in the limit of large N , i.e.,
when you add up a very large number of statistically independent random
variables each with the distribution sketched in (a)? What should be the
mean and standard deviation of this distribution?

(a) si is non-zero for all x except for x = l and x =?l. si(x) is a continuous probability
distribution, and is non-zero only at two points. Therefore, si(x) is a sum of two Delta
functions,

si(x) = pδ(x− l) + qδ(x− l).

Note that with p+ q = 1, we have
∫

si(x)dx = 1.

(b) The mean is

si =

∫ ∞

−∞
xsi(x)dx = lp+ (−l)q = l(p− q)

while mean of the squares is

s2i =

∫ ∞

−∞
x2si(x)dx = l2p+ (−l)2q = l2.

Therefore the average l(p− q) and the standard deviation is 2l
√
pq.
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(c) The total displacement is a sum of individual displacements, xN =
∑N

i=1
si. Therefore

m̄ =
1

l
xN =

1

l

N
∑

i=1

si = N(p− q).

(d) To calculate the standard deviation, we first find, x2
N :

x2
N =

(

N
∑

i=1

si

)(

N
∑

i=1

si

)

=
N
∑

i,j=1

sisj =
N
∑

i 6=j=1

sisj +
N
∑

i=1

sisi.

Now since individual steps are statistically independent sisj = sisj and we get

x2
N =

N
∑

i 6=j=1

l2(p− q)2 +
N
∑

i=1

l2 = N(N − 1)l2(p− q)2 +Nl2

and so m2 = N(N − 1)(p− q)2 +N and the standard deviation is

σm =
√

m2 −m2 =
√

−N(p− q)2 +N = 2
√

Npq.

(e) First we must calculate

s3i =

∫ ∞

−∞
x3si(x)dx = l3p+ (−l)3q = l3(p− q).

s2i =

∫ ∞

−∞
x2si(x)dx = l2p+ (−l)2q = l4.

Then, as before, we must separate sisjsk or sisjsksp into cases where there are one,
two, three or four different variables.

x3
N =

(

N
∑

i=1

si

)3

=

N
∑

i,j,k=1

sisjsk =

N
∑

i 6=j 6=k=1

sisjsk + 3

N
∑

i 6=j=1

sisisj +

N
∑

i=1

sisisi.

x4
N =

N
∑

i 6=j 6=k 6=p=1

sisjsksp+6

N
∑

i 6=j 6=k=1

sisisjsk+3

N
∑

i 6=j=1

sisisjsj+4

N
∑

i 6=j=1

sisisisj+

N
∑

i=1

sisisisi.

leading to

m3 = N(N − 1)(N − 2)(p− q)3 + 3N(N − 1)(p− q) +N(p− q)

m4 = N(N − 1)(N − 2)(N − 3)(p− q)4 + 6N(N − 1)(N − 2)(p− q)2

+ 3N(N − 1) + 4N(p− q)2 +N.

These are indeed the same results as in the previous question.
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(f) xN = ml is the sum of N statistically independent variables with defined mean and the
standard deviation. Then, according to the Central Limit Theorem, the probability
distribution of m approaches Normal distribution for large N :

PN(m) =
1

2πN4pq
e−

m2

2N4pq .

1.7 Telephone Problem

Reif §1.15: A set of telephone lines is to be installed so as to connect town A to
town B. The town A has 2000 telephones. If each of the telephone users of A were
to be guaranteed instant access to make calls to B, 2000 telephone lines would be
needed. This would be rather extravagant. Suppose that during the busiest hour
of the day each subscriber in A requires, on the average, a telephone connection
to B for two minutes, and that these telephone calls are made at random. Find
the minimum number M of telephone lines to B which must be installed so that
at most only 1 percent of the callers of town A will fail to have immediate access
to a telephone line to B. (Suggestion: approximate the distribution by a Gaussian
distribution to facilitate the arithmetic.)

At an instant, the probability that some subscriber in A is on call to B is

p =
2

60
=

1

30

obviously, the subscriber is not on call to B with probability q = 1− p.
Assuming all the subscribers have independent probability of being on the phone, the

probability of exactly n subscriber being on the line is given by:

W (n) =
N !

n!(N − n)!
pnqN−n

where the factor in front is for the duplicities of choosing the subscribers on the line, and
this in fact is a binomial distribution!

Now, suppose we had m phone lines in service. Then, when more than m subscribers try
to make a call at the same time, they will fail to connect. Thus, integrating over the the
possiblity of more than m subscribers simultaneously making calls at the same time we get
the probability of calls being dropped:

P (m) =
N
∑

n=m+1

W (n)
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This summation is rather complex to solve for a large N , so we use Gaussian approximation
which should work well for large N , as in (§1.5.19).

P (m) =

∫ N

m+1

dn
1

√

2πNp(1− p)
e
− (n−Np)2√

2πNp(1−p)

We want to find a number m for which our probability of dropping calls(P ) does not
exceed 1 percent. Calculating numerically for some values of m we get

P (67) = 0.4340426842

P (70) = 0.2946689944

P (75) = 0.1224884633

P (80) = 0.0370919232

P (83) = 0.0154180065

P (84) = 0.0111930934

P (85) = 0.0080130872

Thus, the minimum m value leading to call drop probability less than 1 percent is

m = 85

✷
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1.8 3-D Isotropic Scattering

Reif §1.18: A molecule of gas moves equal distances l between collisions with
equal probability in any direction. After a total N displacements, what is the
mean square displacement R2 of the molecule from its starting point?

The total distance moved ~R can be expressed as:

~R = ~r1 + ~r2 + . . . ~rN

The squared distance R2 = ~R · ~R thus has mean

R2 = r21 + r22 + . . .+ r2N + 2~r1 · ~r2 + . . .+ 2~r1 · ~rN
+ · · ·+ 2 ~rN−1 · ~rN

The r2n terms have mean l2, whereas the cross terms are given by

~rm · ~rn = l2 cos θmn

where θmn is the angle between the direction of the mth scattering and the direction of the
nth scattering. Since θmn is uniformly distributed in (0, π), we see

~rm · ~rn = l2cos θmn = 0.

q

q

rm
rn

rn�

Figure 1: For a given ~rm we see that the for each possible vector ~rn, there is
another, equally probable ~rn

′ for which the product ~rm · ~rn = − ~rm · ~rn′ , thus
when we average over the uniform angular distribution, we see that we must
have ~rm · ~rn = 0.

This gives us

R2 = Nl2

which has a root mean squared value
√

R2 =
√
Nl. ✷
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1.9 Uniform Distributions on Circles and Spheres

Reif §1.24:

(a) A particle is equally likely to lie anywhere on the circumference of a circle.
Consider as the z-axis any straight line in the plane of the circle and passing
through its center. Denote by θ the angle between this z-axis and the
straight line connecting the center of hte circle to the particle. What is the
probability that this angle lies between θ and θ + dθ?

(b) A particle is equally likely to lie anywhere on the surface of a sphere. Con-
sider any line through the center of this sphere as the z-axis. Denote by
θ the angle between this z-axis and the straight line connecting the center
of the sphere to the particle. What is the probability that this angle lies
between θ and θ + dθ?

R
q

dq
dq

q

R

Figure 2: The probability for the particle to be located between θ and θ + dθ
on a circle and sphere are proportional to the arc length subtended and the area
subtended respectively.

(a) Since we have a uniform distribution of probability on the circumference of the circle
we have the infinitesimal probability proportional to the infinitesimal arc length.

dP ∝ dS = Rdθ

where R is the radius of the circle.

Remembering that the probability that the particle is somewhere on the circle must
be 1, we see that for some constant C

∫

dP = C

∫

Rdθ = 2πRC = 1

giving us that C = 1/2πR.
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Thus the probability that the particle will lie between θ and θ + dθ is

p(θ)dθ =
Rdθ

2πR
=

dθ

2π

(b) Similarly for the sphere, we see that the probability is proportional to the area

dP ∝ dA

The area covered by particles between θ and θ + dθ is given by the area of the ribbon
shown, which has width Rdθ and circumference 2πR sin θ. The total surface area of a
sphere is of course 4πR2. Thus we have

p(θ)dθ =
dA

4πR2

=
2πR sin θRdθ

4πR2

=
2πR2 sin θdθ

4πR2

giving

p(θ)dθ =
1

2
sin θdθ .

Integrating from θ = 0 to π gives a total probability
∫

p(θ)dθ = 1.

✷
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1.10 Waiting Times

(a) The probability density for observing a car is p(t)dt = dt/τ , where τ = 5 min. Hence the
average number of cars in the time interval dt is dt/τ . Then, in one hour the average
number is

60 min

dt

dt

τ
= 12 cars.

(b) In a randomly chosen ten minute interval, exactly 2 buses will be seen: Pbus(n) = δn,2.
In order to calculate the number of cars arriving in an interval T = 10 min, we divide
this interval into N shorter intervals of length dt = T/N . The probability of observing
a car in one of the short intervals is p = dt/τ , and if dt is infinitesimally small, we can
ignore the probability of two cars arriving in the same interval. So, we have a binomial
probability distribution (N trials, probability p for success, and 1 − p for failure), so
if we take N → ∞, p → 0, as above, we get a Poisson distribution with parameter
λ = Np = T/τ = 2.

Pcar(10 min, n) =
2n

n!
e−2.

(c) The bus probability is a delta function, thus n̄bus = 2, var(nbus) = 0. In this case of the
car, rather than calculate the mean and variation of the Poisson distribution, we can
just take the limit N → ∞, p → 0, Np → T/τ = 2 in the binomial distribution. Thus

ncar = Np = 2 , var(ncar) = Np(1 − p) → 2.

(d) Clearly, pbus(∆t) = δ(∆t − 5). Thus ∆t = 5min, var(∆t) = 0. For the car, we need to
calculate the probability density for a time interval ∆t−dt with no cars at all, and then
a time interval dt with just one car. Since these two probabilities are uncorrelated, the
joint probability is just the product of the two:

pcar(∆t)dt = Pcar(∆t, n = 0)Pcar(dt, n = 1) =
(∆t/τ)0

0!
e−∆t/τ · (dt/τ)

1!
e−dt/τ =

dt

τ
e−∆t/τ

This is the exponential probability distribution.

∆t =
1

5

∫ ∞

0

te−∆t/5dt = 5 min, var(∆t) =
1

5

∫ ∞

0

(t− 5)2e−∆t/5dt = 25 min2.

(e) In the case of a bus, since the observer came at a random time, there is a uniform
probability density

pbus(∆t) =

{

1/5 ∆t < 5
0 otherwise

∆t =
1

5

∫ 5

0

tdt = 2.5 min, var(∆t) =
1

5

∫ 5

0

(t− 2.5)2dt = 2.08 min2.
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In the case of the car, the probability density is the same exponential density that
we calculated in (d). The probability of observing a car at any given moment does
not depend on what happened before, and therefore pcar(∆t) does not depend on the
starting time of the measurement. Hence ∆t = 5 min, var(∆t) = 25 min2.

(f) In a dirty metal or dilute gas, the time between collisions is random. The probability to
collide at a certain time interval does not depend on past collisions, and therefore the
scenario of exponentially distributed collision times (like the cars) is more relevant.

(g) The probability density of collisions times is exponential

p(∆t) =
dt

τ
e−∆t/τ

The mean time between collisions is ∆t = τ .

(h) As we have seen, this process has no memory and therefore

p(∆tprev)dt =
dt

τ
e−∆tprev/τ , p(∆tnext)dt =

dt

τ
e∆tnext/τ ,

and
∆tnext = ∆tprev = τ.

(i) From (g) we get that the average time between collisions is τ . In (h), we get that
for a randomly chosen time t, the time between the consecutive collisions will be
∆tnext+∆tprev = 2τ . This appears to be a paradox. However, the results are consistent!
If an observer arrives at a random time t, she is more likely to fall on one of the long
time intervals, and therefore the interval length measured by such an observer would
not reflect the actual distribution of collision times.

✷
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