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2.1 Classical Particle in a 1-D Box

Reif §2.1: A particle of mass m is free to move in one dimension. Denote its
coordinate by x and its momentum by p. Suppose that this particle is confined
within a box so as to be located between x = 0 and x = L, and suppose that its
energy is known to lie between E and E + δE. Draw the classical phase space
of this particle, indicating the regions of this space which are accessible to the
particle.
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Figure 1: Solution to problem 2.1

Assuming the particle is confined classically to the box 0 ≤ x ≤ L, we have

E <
p2

2m
< E + δE

solving for p we define √
2mE < p <

√

2m(E + δD) (1)

linearizing we see

p(E) =
√
2mE δp =

√

m

2E
δE (2)

✷
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2.2 Two Particles in a Box

Reif §2.2: Consider a system consisting of two weakly interacting particles,
each of massm and free to move in one dimension. Denote the respective position
coordinates of the two particles by x1 and x2, their respective momenta by p1 and
p2. The particles are confined within a box with end walls located at x = 0 and
x = L. The total energy of the system is known to lie between E and E + δE.
Since it is difficult to draw in four-dimensional phase space, draw seperately the
part of phase space involving x1 and x2, and that involving p1 and p2. Indicate
on these diagrams the regions of phase space accessible to the system.
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Figure 2: Solution for problem 2.2

Again, the classical particles are bound to the region 0 < x < L. Due to the weak coupling
between the particles, the momenta must obey

E <
1

2m
(p21 + p22) < E + δE (3)

which bounds the solution between two circles in momentum space,

2mE < p21 + p22 < 2m(E + δE) (4)

with radii
√
2mE and

√

2m(E + δE) =
√
2mE +

√

m/2EδE. ✷
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2.3 Ensemble of Harmonic Oscillators

Reif §2.3: Consider an ensemble of classical one-dimensional harmonic oscilla-
tors.

(a) Let the displacement x of an oscillator as a function of time t be given by
x = A cos(ωt+φ). Assume that the phase angel φ is equally likely to assume
any value in its range 0 < φ < 2π. The probability w(φ)dφ that φ lies in
the range between φ and φ+dφ is then simply w(φ)dφ = (2π)−1dφ. For any
fixed time t, find the probability P (x)dx that x lies between x and x + dx
by summing w(φ)dφ over all angles φ for which x lies in this range. Express
P (x) in terms of A and x.

(b) Consider the classical phase space for such an ensemble of oscillators, their
energy being known to lie in the small range between E and E+δE. Calcu-
late P (x)dx by taking the ratio of that volume of phase space lying in this
energy range and in the range between x and x + dx to the total volume
of phase space lying in the energy range between E and E + δE. Express
P (x) in terms of E and x. by relating E to the amplitude A, show that the
result is the same as that obtained in part (a).

(a) We have

p(x)dx =
∑ w(φ)

|dx/dφ|dφ

= 2
dx

2πA sin(ωt+ φ)

=
dx

π
√
A2 − x2

(b) We have the energy as a function of the amplitude:

E =
p2

2m
+

kx2

2
=

kA2

2

The equal energy (equal amplitude) contour, in phase space is an ellipse (see Fig 2.3.1
in Reif). If we make the transformation p′2 = p2/(mk), we get a circle as the equal
energy (amplitude) contour. A2 = x2+p′2. Now, the phase space volume lying between
E and E + δE is represented by the area of a shell between A and A + δA where δA
is a function of δE.

W (A)δA = 2πAδA.

In order to calculate which portion of this shell lies between x and dx, we need to move
polar coordinates

cos θ =
x

A
, dθ =

dx

A sin θ
=

dx√
A2 − x2

.
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Therefore, the area of the two parts of the shell that lies between x and x+ dx is

W (x,A)dxδA = 2AdθδA =
2AdxδA√
A2 − x2

.

and the probability of being in this interval is

p(x)dx =
W (x,A)dxδA

W (A)δA
=

dx

π
√
A2 − x2
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2.4 Magnetization of Spins

Reif §2.4: Consider an isolated system consisting of a large number N of very
weakly interacting localized particles of spin 1

2
. Each particle has a magnetic

moment µ which can point either parallel of antiparallel to an applied field H .
The energy E of the system is then E = −(n1 − n2)µH , where n1 is the number
of spins aligned parallel to H and n2 the number of spins aligned antiparallel to
H .

(a) Consider the energy range between E and E + δE where δE is very small
compared to E but is microscopically large so that δE ≫ µH . What is the
total number of states Ω(E) lying in this energy range?

(b) Write down an expression for lnΩ(E) as a function of E. Simplify this
expression by applying Stirling’s formula in its simplest form

lnn! ≈ n lnn− n.

(c) Assume that the energy E is in a region where Ω(E) is appreciable, i.e., that
it is not close to the extreme possible values ±NµH which it can assume.
In this case apply a Gaussian approximation to part (a) to obtain a simple
expression for Ω(E) as a function of E.

(a) This problem is like counting the number of states in a binomial distribution. Note
this is only counting the number of states. There are two possible states for each
of the spins, i.e. parallel and antiparallel. E = −(n1 − n2)µH can be written as
E = −(2n1 −N)µH using N = n1 + n2. Thus, by counting the number of states for a
specific value of n1, we can directly relate it to the number of states within the energy
range. The number of states for n1 is

Ω(n1) =
N !

n1!(N − n1)!

Now, Ω(E,E+δE) can be found by counting the number of n1 within the energy range
E,E + δE. Since δE ≫ 2µH , we can approximate the number to be | δE

dE/dn
|. Since

E = −(2n1 −N)µH , dE
dn

= −2µH . Thus,

Ω(E,E + δE) = Ω(n1)|
1

dE/dn
|δE =

N !

n1!(N − n1)!

δE

2µH

where we can substitute n1 =
1
2
(N − E

µH
) to get

Ω(E,E + δE) =
N !

(N/2− E/2µH)!(N/2 + E/2µH)!

δE

2µH
.
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(b) Using the result of (a),

ln Ω(E) = lnN !− ln(N/2− E/2µH)!− ln(N/2 + E/2µH)!− ln 2µH

apply Stirling’s formula to this we get

lnΩ(E) = N lnN −N − ln 2µH − N − E/µH

2
ln

N −E/µH

2
+

N − E/µH

2

−N + E/µH

2
ln

N + E/µH

2
+

N + E/µH

2
.

= N lnN − ln 2µH − N −E/µH

2
ln

N − E/µH

2
− N + E/µH

2
ln

N + E/µH

2

(c) Although this is not a random walk, the formula of the number of states is proportional
to the random walk probability with p = q = 1

2
. In particular, if we put a factor of

Ω = 2N in front of the expression and cancel it by adding a factor of pnqN−n = 1
2N

,
then our distribution is identical to the binomial distrbution with the additional factor
of Ω. Thus, using the Gaussian approximation (§1.6.4) on the result of (a),

Ω(E)dE =
Ω√
2πσ

e−(E−Ē)2/2σ2

dE

=
2N√

2πNµH
e
−

E2

2N(µH)2 dE

Ē = (p− q)Nl = 0, σ = 2
√
Npql = 2

√

N 1
4
µH =

√
NµH , and Ω = 2N has been used.

We can also show this starting from the result of (b). Assuming E is not close to
±NµH , i.e. E

µH
≪ N , we can use ln(1− x) ≈ −x for x ≪ 1. Then,

ln
N ±E/µH

2
= ln

N

2
(1± E

µHN
)

= ln
N

2
+ ln(1± E

µHN
)

≈ ln
N

2
± E

µHN

Using this in the equation for lnΩ(E),

ln Ω(E) = N lnN − ln 2µH − N −E/µH

2
(ln

N

2
− E

µHN
)− N + E/µH

2
(ln

N

2
+

E

µHN
)

= N ln 2− ln 2µH − 1

2N
(
E

µH
)2 (5)

This yields the Gaussian approximation

Ω(E) =
2N

2µH
e
−

E2

2N(µH)2 .
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(Note: Two results have constant factor difference because we used a simple form of
Sterling’s approximation, thereby dropping some terms in the logarithmic scale.) ✷
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2.5 Wire Under Tension

Reif §2.9: The tension in a wire is increased quasi-statically from F1 to F2. If
the wire has length L, cross-sectional area A, and Young’s modulus Y, calculate
the work done.

The force F required to stretch by ∆L a wire with initial length L, cross-sectional area
A, and Young’s modulus Y is given by

F

A
= Y

∆L

L
(6)

The work done in increasing the force from F1 to F2 is

W =

∫

pdV =

∫

Fdx (7)

So, changing variables so that the integral runs from ∆L1 to ∆L2, with ∆Li =
L
Y A

Fi, we
have

∫ ∆L2

∆L1

Y A

L
ldl =

Y A

2L
(∆L2

2 −∆L2
1) =

L

2Y A
(F 2

2 − F 2
1 ) (8)
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2.6 Exact and Inexact differentials

Reif §2.6: Consider the infinitesimal quantity

(x2 − y)dx+ xdy ≡ d̄F (9)

(a) Is this an exact differential?

(b) Evaluate the integrals
∫

d̄F between the points (1, 1) and (2, 2) along the
straight line paths connecting the folllowing points:

(1, 1) → (1, 2) → (2, 2)

(1, 1) → (2, 1) → (2, 2)

(1, 1) → (2, 2)

(c) Suppose that both sides of the d̄F equation are divided by x2. This yields
the quantity d̄G = d̄F/x2 Is d̄G and exact differential?

(d) Evaluate the integral
∫

d̄G along the three pahts of part (b).

(a) For something to be an exact differential it must be expressed as

d̄F = A(x, y)dx+B(x, y)dy =
∂F

∂x
dx+

∂F

∂y
dy

If this was the case then we would have

∂

∂y
AF (x, y) =

∂2F

∂x∂y
=

∂

∂x
BF (x, y),

however we see instead that

∂AF

∂y
=

∂

∂y
(x2 − y)

= −1
∂BF

∂x
=

∂

∂x
x

= 1

⇒ ∂AF

∂y
6= ∂BF

∂x

hence d̄F cannot be an exact differential.

(b) Evaluating
∫

d̄F we see

F [(1, 1) → (1, 2) → (2, 2)] = 0 +

∫ 2

1

1dy +

∫ 2

1

(x2 − 2)dx+ 0 =
4

3

F [(1, 1) → (2, 1) → (2, 2)] =

∫ 2

1

(x2 − 1)dx+ 0 +

∫ 2

1

2dy =
10

3

F [(1, 1) → (2, 2)] =

∫ 2

1

(x2 − x)dx+

∫ 2

1

ydy =
7

3
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(c) We have

d̄G = (1− y

x2
)dx+

1

x
dy

giving

∂AG

∂y
=

∂

∂y
(1− y

x2
)

= − 1

x2

∂BG

∂x
=

∂

∂x

1

x

= − 1

x2

⇒ ∂AG

∂y
=

∂BG

∂x

Hence d̄G is an exact differential.

(d) Using the definition of d̄G,

G[(1, 1) → (1, 2) → (2, 2)] = 0 +

∫ 2

1

dy +

∫ 2

1

(1− 2/x2)dx+ 0 = 1

G[(1, 1) → (2, 1) → (2, 2)] =

∫ 2

1

(1− 1/x2)dx+ 0 +

∫ 2

1

dy/2 = 1

G[(1, 1) → (2, 2)] =

∫ 2

1

(1− x/x2)dx+

∫ 2

1

dy/y = 1

The integral
∫

d̄G does not vary between the three paths.
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2.7 Quantum Particle in a Box

Reif §2.7: Consider a particle confined within a box in the shape of a cube of
edges Lx = Ly = Lz . The possible energy levels of this particle are then given by

E =
~
2

2m
π2

(

n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)

.

(a) Suppose that the particle is in a given state specified by particular values
of the three integers nx, ny, nz. By considering how the energy of this state
must change when the length Lx of the box is changed quasistaticallly by a
small amount dLx, show that the force exerted by the particle in this state
on a wall perpendicular to the x-axis is given by Fx = ∂E/∂Lx.

(b) Calculate explicitly the force per unit area (or pressure on this wall. By
averaging over all possible states, find an expression for the mean pressure
on this wall. (Exploit the property that the average values n2

x = n2
y = n2

z

must be equal by symmetry). Show that this mean pressure can be very
simply expressed in terms of the mean energy Ē of the particle and the
volume V = LxLyLz of the box.

(a) We have

E =
~
2π2

2m

(

n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)

For a small change in distance δLx, we have the change in energy

δE =
∂E

∂Lx
δLx = −2

~
2π

m

n2
x

L3
x

δLx. (10)

Which corresponds to work FxδLx = δW = −δE. Hence we have

Fx =
∂E

∂Lx
= 2

~
2π

m

n2
x

L3
x

. (11)

(b) To calculate the mean value of the pressure we first see pressure is defined as

P =
Fx

Ax
=

Fx

LyLz

the mean value is then

P̄ =
F̄x

LyLz
=

~
2π2

m

n2
x

L3
x

1

LyLz

To find an expression for n2
x we notice

Ē =
~
2π2

2m

(

n2
x

L2
+

n2
y

L2
+

n2
z

L2

)
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with L = Lx = Ly = Lz. Noting that by symmetry n2
x = n2

y = n2
z,

n2
x =

2mL2Ē

3~2π2
(12)

Hence we have

P̄ =
2

3

Ē

V
. (13)

where V = L3. ✷
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