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3.1 Boundary Conditions

(a) We have the energy of N point particles with periodic Boundary Conditions (BCs) given
by

E =
2~2π2

mL3

N
∑

i=1

(n2
xi
+ n2

yi
+ n2

zi
).

Now nxi
, nyi, nzi ∈ Z, therefore the number of states with an energy less than E is

given by the “volume” of a 3N dimensional sphere.

R =

√

EmL2

2~2π2

thus we have the number of states with energy less than E, Φ(E)

Φ(E) = V3N(R)

=
π3N/2R3N

Γ
(

3N
2
+ 1

)

where we’ve used the volume of the 3N -dimensional sphere derived in class.

Using Stirling’s approximation we see:

Φ(E) ≈ π3N/2

(

EmL2

2~2π2

)3N/2 (
3N

2

)

−3N/2

e3N/2

√

2π
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2

=
√
3πN

(

EmL2e

3~2πN

)3N/2

We want the number of states between energy E and E + δE. This should be the
volume of the shell between the corresponding radii, ie the hypersurface area times the
width of the shell:

ΩP (E) =
dΦ

dR
δR =

dΦ

dE
δE

=
3N

2

√
3πN

(

EmL2e

3~2πN

)3N/2−1
mL2e

3~2πN
δE
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which gives

ΩP (E) =
3N

2E

√
3πN

(

EmL2e

3~2πN

)3N/2

(1)

The number of states for the Dirichlet Boundary Conditions can be inferred from
comparing the energies of the different systems. We see that

ED = 4EP ⇒ RD = 2RP (2)

Noting the factor of 2−3N that limits the volume considered to the positive “quadrant”
of the 3Nsphere, we see

ΩD(E) = 2−3NΩP (E)

(

RD

RP

)3N

= ΩP (E) (3)

Thus the number of states with the periodic boundary conditions is the same as the
number of states with Dirichlet boundary conditions.

(b) The Neumann boundary conditions require that the derivative of the wavefunction be
zero at the boundaries. This yields a cosine like solution (Dirichlet boundary conditions
lead to a sine like solution). Both the Dirichlet and the Neumann solutions have the
same wavelength, and thus the same energies in corresponding states. Thus the number
of states for the Neumann boundary conditions must be the same as the number for
the Dirichlet boundary conditions.
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Figure 1: The solution to the Dirichlet boundary conditions have the same wave-
lengths and energies as the solutions to the Neumann boundary conditions, thus
there will be the same number of states with energy less than E in both cases.

✷
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3.2 Magnetization with Temperature

Reif §3.2: Consider a system of N localized weakly interacting particles, each
of spin 1

2
and magnetic moment µ, located in an external magnetic field H . This

system was already discussed in Problem 2.4.

(a) Using the expression for lnΩ(E) calculated in Problem 2.4b and the defini-
tion β = ∂ ln Ω/∂E, find the relation between the absolute temperature T
and the total energy E of this system.

(b) Under what circumstances is T negative?

(c) The total magnetic moment M of this system is related to its energy E. Use
result of part (a) to find M as a function of H and the absolute temperature
T .

(a) Recall the result of problem 2.4(a), lnΩ(E) of the system is

lnΩ(E) = N lnN − ln 2µH − N −E/µH

2
ln

N − E/µH

2
− N + E/µH

2
ln

N + E/µH

2

Using the definition of β,

β =
∂ lnΩ(E)

∂E

=
1

2µH
ln

N − E/µH

2
− N/2−E/2µH

N/2−E/2µH
(− 1

2µH
)

− −1

2µH
ln

N + E/µH

2
− N/2 + E/2µH

N/2 + E/2µH

1

2µH

=
1

2µH
ln

NµH − E

NµH + E

Since β = 1
kBT

this is, 2µH
kBT

= ln NµH−E
NµH+E

. If we write E in terms of T ,

e
2µH

kBT =
NµH −E

NµH + E
E

NµH
(1 + e

2µH

kBT ) = 1− e
2µH

kBT

E

NµH
=

1− e
2µH
kBT

1 + e
2µH

kBT

= − tanh
µH

kBT
.

(4)

(b) Using the result of (a), this problem is straight forward. Since β = 1
2µH

ln NµH−E
NµH+E

= 1
kBT

,

we require β < 0 for T < 0. µ and H being positive, we have NµH−E
NµH+E

< 1 which gives
us E > 0.
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(c) For the spin model, E = −(n1 − n2)µH whereas M = (n1 − n2)µ. Thus, M = −E
H
. Use

the result of part (a), we get

M = Nµ tanh
µH

kBT
.

✷

3.3 Spin Systems in a Magnetic Field

Reif §3.3: Consider two spin systems A and A′ placed in an ecternal field H.
System A consists of N weakly interacting localized particles of spin 1

2
and mag-

netic moment µ. Similarly, system A′ consists of N ′ weakly interacting localized
particles of spin 1

2
and magnetic moment µ′. The two systems are initially iso-

lated with respective total energies bNµH and b′Nµ′H . They are then placed in
thermal contact with each other. Suppose that |b| ≪ 1 and |b′| ≪ 1 so that the
simple expressions of problem 2.4c can be used for the densities of states of the
two systems.

(a) In the most probably sistuation corresponding to the final thermal equilib-
rium, how is the energy Ẽ of the system A related to the energy Ẽ ′ of system
A′?

(b) What is the value of the energy Ẽ of system A?

(c) What is the heat Q absorbed by system A in going from the initial situation
to the final situation when it is in equilibrium with A′?

(d) What is the probability P (E)dE that A has its final energy in the range
between E and E + dE.

(e) What is the dispersion (∆ ∗E)2 ≡ (E − Ẽ)2 of the energy E of system A in
the final equilibrium situation?

(f) What is the value of the relative energy spread |∆ ∗ E/Ẽ| in the case when
N ′ ≫ N ′?

From section we know that the number of states in such a system from problem 2.4 in Reif
is

Ω(E) =
δE

√

2πµ2H2N
e
−

E2

2µ2H2N

(a) At equilibrium the total entropy is maximized, such that the temperatures (and therefore
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β must be equal in the two systems

∂ ln Ω

∂E
=

∂ lnΩ′

∂E ′

∂

∂E

−E2

2µ2H2N
=

∂

∂E ′

−E ′2

2µ′2H2N ′

Ẽ

µ2N
=

Ẽ ′

µ′2N ′

⇒ Ẽ = Ẽ ′
µ2N

µ′2N ′

(b) Noting that the total energy is conserved we have

Ẽ = Etot − Ẽ ′

Ẽ = H(bNµ + b′N ′µ′)− Ẽ
µ′2N ′

µ2N

⇒ Ẽ =
H(bNµ + b′N ′ u′)

1 + µ′2N ′/µ2N

Hence

Ẽ =
µ2NH(bNµ + b′N ′µ′)

µ2N + µ′2N ′
(5)

(c) Since the system is siolated and only in thermal contact with each other all the energy
transferred must be heat, therefore

Q = ∆E

=
H(bNµ + b′N ′ u′)

1 + µ′2N ′/µ2N
− bNµH

Q =
NN ′H(b′µ′µ2 − bµ′2µ)

µ2N + µ′2N ′
(6)

(d) We have

Ω(E) ∝ δE exp[− E2

2µ2H2N
] Ω′(E ′) ∝ exp[− E ′2

2µ′2H2N ′
]

The probability for system A to be in a state with energy between E and E + dE is

PA(E) ∝ Ω(E)Ω′(E(o)− E)

= δE exp[− E2

2µ2H2N
− (E(o)−E)2

2µ′2H2N ′
]

= δE exp[−µ′N ′E2 + µ2N(E(o)−E)2

2µ2µ′2H2NN ′
]

= δE exp[−E2(µ′2N ′ + µ2N)− 2ẼE(µ′2N ′ + µ2N)

2µ2µ′2H2NN ′
] exp[− µ2N(E(o))2

2µ2µ′2H2NN ′
]
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Since E(o) and Ẽ are constants we can mulitply by exponentials of them and still
maintain proportionality, thus dropping the (E(o))2 term and completin the square
with Ẽ:

PA(E) ∝ δE exp[−(E2 − 2ẼE − E2)(µ2N + µ′2N ′)

2µ2µ′2NN ′H2
]

Normalizing we see:

PA(E) =
δE√
2πσ

e−(E−Ẽ)2/2σ2

where σ2 ≡ µ2µ′2H2NN ′

µ2N+µ′2N ′
.

(e) As we can see in the formulation above, the probability PA(E) is a gaussian, with
variance σ2 as defined above.

(f) Using the results from above we see

∣

∣

∣

∣

∆ ∗ E
Ẽ

∣

∣

∣

∣

=
µµ′H

(

NN ′

µ2N+µ′2N ′

)1/2

µ2NH(bNµ+b′N ′µ′

µ2N+µ′2N ′

=
µµ′H(NN ′)1/2

µ′2NH [bNµ + b′N ′µ′]
(µ2N + µ′2N ′)1/2

≈ µ′

µb′N1/2

✷
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3.4 Mixture of Ideal Gases

Reif §3.5: A system consists of N1 molecules of type 1 and N2 molecules of type
2 confined within a box of volume V . The molecules are supposed to interact
very weakly so that they constitute an ideal gas mixture.

(a) How doe the total number of states Ω(E) in the range between E and E +
δE depend on the volume V of this system? You may treat the problem
classically.

(b) Use this result to find the equation of state of this system, i.e., to find its
mean pressure p̄ as a function of V and T .

(a) According to Reif §2.5.14, the total number of states has the following dependence on
V:

Ω(E) ∝ V N1+N2

(b) We have

p̄ =
1

β

∂ ln Ω

∂V

=
1

β

∂

∂V
[(N1 +N2) lnV ]

=
1

β

N1 +N2

V
(7)

Hence we have the equation of state:

p̄ =
N1 +N2

V
kT

✷
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