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4.1 Equilibrium Fluctuations

Consider a monatomic ideal gas consisteing of N gas atoms in a container of volume V .

(a) How does the number Ω(E, V,N) of accessible microstates at energy E and volume V
depend on E and on V ? You may ignore numerical prefactors that depend on N only.

(b) The gas brought in thermal equilibrium with a “heat reservoir” at tmperature T . (A
heat reservoir is a macroscopic system that is so large that its temperature remains
unaffected if energy is absorbed or emitted.) As a result the enrgy E of the gas shows
random fluctuations as a function of time. For these fluctuations, find the average

energy Ē and the variance of the energy var(E) = (E − Ē)2.

(c) The cas is brought in thermal equilibrium with a heat and pressure bath at temperature
T and pressure p. (A “pressure reservoir is a macroscopic system that is so large that
its pressure remains unaffected if its volume is changed. Our local atmosphere is an
example of a heat and pressure reservoir.) As a result, the energy E and the volume
V of the gas show random fluctuations as a function of time. For these fluctuations,
find the averages Ē and V̄ and the variances var(E) and var(V ). Are the fluctuations
of enegy and volume statistically independant?

4.2 Calorimetry

Reif §4.2
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4.3 Pulling on a Polymer

With the help of (bio)chemical methods, it has become possible to study the mechanical
properties of long molecules or polymers, such as proteins or DNA. In this exercise, you are
asked to consider one such molecule. Although a polymer is only one molecule, it has many
degrees of freedom because it is flexible. That’s why we can use methods from statistcal
mechanics to describe polymers.

One end of the polymer is attached to a substrate. To the other end, which is free to
move, a dipolar marker is attached. With the hlep of a uniform electric field gradient, a
constant force can be exerted on the dipole.

We will model the polymer as a one-dimensional chain of N links of length l. Each link
can point left or right. Two examples of the possible configurations of the polymer are shown
in the figure below for N = 20. The real polymer is of course has a much larger number of
links N . (In the figure for clarity a second dimension has been added.) One end of hte chain
is kept at fixed position xo = 0 (since it is attached to the substrate), whereas the other end
at position xN , is free to move.

The energy of the polymer is
E = −axN (1)

The constant a is positive and proportional to the marker’s dipole moment and the electric
field gradient. Since −Nl ≤ xN ≤ Nl, the energy E can take values between −Nal and Nal.

(a) Show that for N ≫ 1 the number of “microstates” (configurations) Ω(E) for which the
energy of the polymer is between E and E + δE is equal to

Ω(E) =
2NδE

al
√
2πN

e−E2/2Nl2a2 ,

if al ≪ δE ≪ E and |E| ≪ Nal.

(b) Find the entropy of S of the polymer at energy E.

(c) The polymer is immersed in a solution at temperature T . If the polymer and the
surrounding liquid are in thermal equilibrium, what is the (average) energy Ē of the
polymer? what are the fluctuations of the energy?
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(d) What is the force the polymer exerts on the marker? Formulate your answer in terms
of the polymer’s extension xN , the temperature T, the link length l, and the numer of
links N .

4.4 Ideal Work

Reif §5.2

4.5 Elastic Rod

Reif §5.14

4.6 Van der Waals Gas

Van der Waals proposed an equation of state for a nonideal gas,

(p+ a(N/V )2)(V −Nb) = NkT.

This equation is obtained from the ideal gas law pV = NkT by subtracting a constant Nb
from the volume V , which models the effect of the short-range repulsive potential between
the gas molecules, and tho add a density-dependent term a(N/V )2 to the pressure, which
represents the effect of the long-range attraction between the gas molecules.

In this exercise we consider the free expansion of a Van der Waals gas. (Free expansion
is an expansion at a fixed total energy E.)

(a) Express (∂T/∂V )E in terms of p, T , (∂p/∂T )V , and CV .

(b) Express (∂S/∂V )E in terms of p and T .

(c) Calculate the temperature change ∆T = T1−T2 for the free exapansion from volume V1

to volume V2. Give explicit results for the Van der Waals gas. You may assume that
the heat capacity CV is temperature-independent.

4.7 Email three questions
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