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6.1 Harmonic Oscillator

Reif §6.1: A simple harmonic one-dimensional oscillator has energy levels given
by En = (n + 1

2
)~ω, where ω is the characteristic (angular) frequency of the

oscillator and where the quantum number n can assume the possible integral
values n = 0, 1, 2, . . .. Suppose that such an oscillator is in thermal contact with
a heat reservoir at temperature T low enough so that kT/(~ω) ≪ 1.

(a) Find the ratio of the probability of the oscillator being in the first excited
state to the probability of its being in the ground state.

(b) Assuming that only the ground state and first excited state are apprecia-
bly occupied, find the mean energy of the oscillator as a function of the
temperature T .

(a) We have
P1

P0
=

exp[−βE1]

exp[−βE0]
=

exp[−β(1 + 1/2)~ω]

exp[−β(0 + 1/2)~ω]
= e−β~ω

(b) The average energy is given by

Ē =

∑

r e
−βErEr

∑

r e
−βEr

=
Eoe

−βEo + E1e
−βE1

e−βEo + e−βE1

which gives

Ē = ~ω
1
2
+ 3

2
P1

P0

1 + P1

P0

=
~ω

2

1 + 3e−β~ω

1 + e−β~ω

✷
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6.2 Two State System

Reif §6.6: A system consists of N weakly interacting particles, each of which
can be in either of two states with respective energies ǫ1 and ǫ2, where ǫ1 < ǫ2.

(a) Without explicit calculation, make a qualitative plot of the mean energy Ē
of the system as a function of its temperature T . What is Ē in the limit
of very low and very high temperatures? Roughly near what temperature
does Ē change from its low to its high temperature limiting values?

(b) Using the result of (a), make a qualitative plot of the heat capacity CV (at
constant volume) as a function of the temperature T .

(c) Calculate explicitly the mean energy Ē(T ) and heat capacity CV (T ) of this
system. Verify that your expressions exhibit the qualitative features dis-
cussed in (a) and (b).

(a) For a system in contact with heat reservoir we know that the probabilty of the system
being in a state with energy E is proportional to e−βE , the Boltzmann factor. Thus,
without detailed calculation, we can deduce that low T limit gives Ē = Nǫ1 and high
T limit Ē = N ǫ1+ǫ2

2
. (In low temperatures, particles will prefer to sit in a lower energy

state. In high temperatures, particles will fill both state equally likely.) Now, there is
one energy scale associated with the difference between the two states ∆ǫ = ǫ2 − ǫ1.
Roughly, the transition of Ē will occur at β∆ǫ = 1.

T =
ǫ2 − ǫ1

k

(b) Qualitatively, the energy should approach ∆ǫ/2 as T → ∞ and as T → 0, energy goes
to 0. Also, the probability ratio of being in the two states is an exponential function,
the Boltzmann factor, this is not a linear graph. Thus it should be something like a
smooth step function changing its value at around ∆ǫ ∼ kT .

CV is a first derivative of E(T ) thus is should be peaked at around kT ∼ ∆ǫ according
to the argument and should approach zero for high and low temperatures.

(c) Using the Boltzmann factor,

Ē = N
ǫ1e

−βǫ1 + ǫ2e
−βǫ2

e−βǫ1 + e−βǫ2
=

ǫ1e + ǫ2e
−β(ǫ2−ǫ1)

1 + e−β(ǫ2−ǫ1)

We can easily verify that in the low temperature limit, β → ∞, we get Ē → ǫ1. For
high temperature limit, β → 0, the Boltzmann factor approch one, thus Ē →

ǫ1+ǫ2
2

.
To find CV we take the derivative of this

CV =
∂Ē

∂T
= N

−ǫ2∆ǫe−β∆ǫ(1 + e−β∆ǫ)− (ǫ1 + ǫ2e
−β∆ǫ)(−∆ǫe−β∆ǫ)

(1 + e−β∆ǫ)2
∂β

∂T
=

N

kT 2

ǫ1 − ǫ2e
−β∆ǫ

(1 + e−β∆ǫ)2
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Plotting these functions we get figures 1 and 2. And from these we can indeed see the
features we predicted. CV is peaked around some value ∼ ∆ǫ, and goes to 0 as T is
greater or smaller than the value.

Figure 1: E/∆ǫ vs kT/∆ǫ

Figure 2: CV /k∆ǫ vs kT/∆ǫ

✷
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6.3 Centrifuge

(a) For any particular particle located at position (x, y, z), with momentum (px, py, pz). We
have the energy

E =
p2x + p2y + p2z

2m
− ω(xpy − ypx)

Completing the squares in momentum we see

E =
1

2m

[

p2z + (p2x + 2mωypx +m2ω2y2) + (p2y + 2mωxpy +m2ω2x2)
]

−
1

2
mω2(x2+y2)

This gives the partition function for a single particle

Z1 =
1

h3

∫∫∫

dy dx dz

∫

e−βp2z/2mdpz

∫

e−β(py+mωx)2dpy

∫

e−β(px+mωy)2dpxe
1

2
βmω2r2

=
1

h3

(

2πm

β

)3/2 ∫ L

0

dz

∫ 2π

0

dφ

∫ R

0

e
1

2
βmω2r2rdr

Z1 =

(

2πm

h2β

)3/2
2πL

mβω2
(e

1

2
mβω2R2

− 1) .

(b) Since the particles do not interact we have the total partition function

Z = ZN
1 =

[

(

2πm

h2β

)3/2
2πL

mβω2
(e

1

2
mβω2R2

− 1)

]N

(c) The Hemlholtz free energy is given by

F = −kT lnZ = −NkT lnZ1 = −NkT

[

3

2
ln

(

2πm

h2β

)

+ ln

(

2πL

mβω2

)

+ ln(e
1

2
mβω2R2

− 1)

]

.

(d) First we note that intuitively the pressure should vary with the radius. We have the
Helmholtz free energy

F = E − TS ⇒ dF = −SdT − p(r)dV = −SdT − πR2pavgdL− 2πrLp(r)dr

where pavg is the pressure averaged over the horizontal cross section at z = L. Thus
we have the pressure

p(R) = −
1

2πRL

(

∂F

∂R

)

L,T

=
Nmω2

2πL(1− e−mβω2R2/2)

The total force on the outer wall of the cylinder must then be

f(R) = 2πRLp(R) =
NmRω2

(1− e−mβω2R2/2)
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(e) The probability density of a particle being at position r is

P (r) = 2πL

(

2πm

h2β

)3/2

remβω2r2/2/Z1

Thus the number density

n(r) =
Nmβω2emβω2r2/2

2πL(emβω2R2/2 − 1)
.

The pressure is then given as

p(r) =
Nmω2emβω2r2/2

2πL(emβω2R2/2 − 1)
.
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6.4 Statistical Entropy

(a) For the microcanonical ensemble, we know S = k ln Ω. So we need to show that
−k

∑

r Pr lnPr = k ln Ω. For the microcanonical ensemble: Pr = 1/Ω for E < Er <
E + δE and 0 otherwise, thus we have

−k
∑

r

Pr lnPr = −k
∑

r

1

Ω
ln

1

Ω

= −k
∑

r

1

Ω
ln 1 + k

∑

r

1

Ω
lnΩ

= k ln Ω .

(b) Reif §6.13

S = −k
∑

r

∑

s

Prs lnPrs = −k
∑

r

∑

s

PrPs ln(PrPs) since Pr and Ps are independant

= −k
∑

s

Ps

∑

r

Pr lnPr − k
∑

r

Pr

∑

s

Ps lnPs = −k(1)(−S1/k)− k(1)(−S2/k)

= S1 + S2 (1)

(b) Reif §6.15

S = −k
∑

r

Pr lnPr So = −k
∑

r

P (o)
r lnP (o)

r

S − So = k
∑

r

[

−Pr lnPr + P (o)
r lnP (o)

r

]

= k
∑

r

[

−Pr lnPr + Pr lnP
(o)
r − Pr lnP

(o)
r + P (o)

r lnP (
ro)

]

= k
∑

r

Pr ln
P

(o)
r

Pr
+ k

∑

r

[

Pr(−βEr − lnZ) + P (o)
r (−βEr − lnZ)

]

(Since lnP (o)
r = −βEr − lnZ)

= k
∑

r

Pr ln
P

(o)
r

Pr
+ k

✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0

(
∑

r

PrβEr −
∑

r

P (o)
r βEr) + k lnZ

✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿0

(
∑

r

Pr −
∑

r

P (o)
r )

= k
∑

r

Pr ln
P

(o)
r

Pr
.

We also note that ln x ≤ x− 1 which implies

S − So = k
∑

r

Pr ln
P

(o)
r

Pr

≤ k
∑

r

(P (o)
r − Pr) = 0
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Thus we must have
S ≤ So

where equality represents the most likely canonical distribution.

6.5 Ideal Gas in a Gravitational Field

Reif §7.2: An ideal monoatomic gas of N particles, each of mass m, is in thermal
equilibrium at absolute temperature T . The gas is contained in a cubical box of
side L, whose top and bottom sides are parallel to the earth’s surface. The effect
of the earths’s uniform gravitational field on the particles should be considered,
the acceleration due to gravity being g.

(a) What is the average kinetic energy of a particle?

(b) What is the average potential energy of the particle?

This problem is most easily approached by first determining the partition function for a gas
molecule in the gravitational field. We have

E =
p2

2m
+mgz

Treating the system classically we have

Z =
1

h3
0

∫∫∫ L/2

−L/2

∫∫∫

∞

−∞

e−(β/2m)(p2x+p2y+p2z)−βmgzdpxdpydpzdxdydz

=
1

h3
0

∫∫ L/2

−L/2

dxdy

∫∫

∞

−∞

e−(β/2m)(p2x+p2y+p2z)dpxdpydpz

∫ L/2

−L/2

e−βmgzdz

=

(

L

h0

)3(√
π2m

β

)3 ∫ L/2

−L/2

1

L
e−βmgzdz (doing the Gaussian integral)

=

(

L2π2m

h2
0β

)3/2 [
2

βmgL
sinh

(

βmgL

2

)]

The first term in the product is the kinetic term, which is the same as for a normal ideal
gas. The second term in the product is the potential term.

(a) The kinetic energy can be given either by the equipartition thereom as Ēk = 3
2
kT or by

taking a derivatives of the partition function

Ēk = −
∂ lnZk

∂β
=

∂

∂β

3

2
ln β =

3

2β
=

3

2
kT
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(b) The potential energy can be found by taking derivatives of the potential part of the
partition function

Ēp = −
∂ lnZp

∂β
=

1

β
−

1

sinh(βmgL/2)

∂ sinh(βmgL/2)

∂β
= kT −

mgL

2

cosh(βmgL/2)

sinh(βmgL/2)

This gives

Ēp = kT −
mgL

2
coth(mgL/2kT )

Checking the zero gravity limit: g → 0 we have coth(mgL/2kT ) → 2kT
mLg

+ mgL
6kT

+O(g3),

Thus we have Ēp → kT −
mgL
2

2kT
mgL

= kT − kT = 0 as expected.

✷

8


