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8.1 Chemical Equilibrium
Reif §8.12: At a fixed temperature 7' = 1200K the gases

002+H2 — OO+H20

are in chemical equilibrium in a vessel of volume V. If the volume of this ves-
sel is increased, its temperature being maintained constant, does the relative
concentration of C'O, increase, decrease, or remain the same?

At constant V, T in equilibrium, F' is minimized. This imples that
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From the chemical equation we know that dN¢o, = ANy, = —dNgco = —dNp,o and thus
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But we also know (from Reif §8.10.24) that
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where (’ is the single species partition function with the volume dependance removed. Hence
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This is independant of volume. Thus the number of the different species do not change, and
the relative concentrations remain the same. O



8.2 Partial Pressure

Reif §8.14: Consider the following chemical reaction between ideal gases:

m

Let the temperature be T', the total pressure be p. Denote the partial pressure
of the ith species by p;. Show that the law of mass action can be put into the
form

PPy - ph = Ky (T) (2)
where the constant K,(T") depends only on 7.
The law of mass action can be written
NN Nom = K (T, V) = -

m

We've already seen that we can rewrite (;(7,V) = V{/(T'), thus we have
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The ideal gas law gives us 7+ = ;7 hence

where 1,(T) = [T, (KTCAT))™.



8.3 Paramagnet

(a) This problem is similar to a random walk but instead of steps to the right and left we
have spins that are up and down. Let s. =# of particles with s; = i%.

Then
N N! NN N . e o
Qsy) = = N using Stirling’s approximations.
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Since sy +s_ = N and E = ugH(s_ — s;) we have sy = & F a where a = %% If

we drop the square root term of th term of the stirling approximation we get
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for integer values of N/2 + a. Defining 0F to coarse grain such that upH < 0E <
NpupH this gives us
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(c) Let b= “22 we then have
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We also have
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Which reduces to
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This gives us a Helmholtz free energy
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(d) The canonical partition function is given by
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(e) From the partition function we can calculate
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8.4 Quantum Harmonic Oscillator

(a) We have

hw
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(c) For the energy we have
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For the entropy we have
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(d) Using the normal canonical parition function given in the problem we see,

OlnZ = 9 In[sinh(Bhw/2)] = % coth(Bhw/2)
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and

S =klnZ — BE = —kIn(2sinh(Bhw/2)) — % coth(Fiw /2KT)

Thus we see we must have u = 0 for the oscillation quanta.



8.5 Equilibrium Fluctuations

(a) The grand canonical parition function is
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We also have

Noting that
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Solving for N2 we see
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(b) The isothermal compressibility can be expressed as
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where v = V/N is the volume per particle.
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From the maxwell relation for F', we have
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Taking another derivative with respect to p we see
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Noting that PV = kT In = and using the second last equation in part (a) we see
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8.6 Grand Canonical Ensemble

(a) The grand canonical ensemble for an ideal gas where V', T', and N can vary is given as

where

is the canonical partition function.
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(b) We have
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Solving for the chemical potential u, we see
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