## Solutions to Problem Set 8

David C. Tsang, Woosong Choi

### 8.1 Chemical Equilibrium

**Reif §8.12:** At a fixed temperature T = 1200K the gases

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

are in chemical equilibrium in a vessel of volume V. If the volume of this vessel is increased, its temperature being maintained constant, does the relative concentration of  $CO_2$  increase, decrease, or remain the same?

At constant V, T in equilibrium, F is minimized. This imples that

$$dF = 0 = -SdT - pdV + \sum_{i} \mu_{i}dN_{i} = \mu_{CO_{2}}dN_{CO_{2}} + \mu_{H_{2}} + dN_{H_{2}} + \mu_{CO}dN_{CO} + \mu_{H_{2}O}dN_{H_{2}O}$$

From the chemical equation we know that  $dN_{CO_2} = dN_{H_2} = -dN_{CO} = -dN_{H_2O}$  and thus

$$\mu_{CO_2} + \mu_{H_2} - \mu_{CO} - \mu_{H_2O} = 0$$

But we also know (from Reif §8.10.24) that

$$\mu = -kT \ln \frac{\zeta'(T)V}{N}$$

where  $\zeta'$  is the single species partition function with the volume dependance removed. Hence we have

$$\ln \frac{\zeta'_{CO_2}(T)V}{N_{CO_2}} + \ln \frac{\zeta'_{H_2}(T)V}{N_{H_2}} - \ln \frac{\zeta'_{CO}(T)V}{N_{CO}} - \ln \frac{\zeta'_{H_2O}(T)V}{N_{H_2O}}$$

$$N_{CO_2} = \frac{\zeta'_{CO_2}(T)\zeta'_{H_2}(T)N_{CO}N_{H_2O}}{\zeta'_{CO}(T)\zeta'_{H_2O}(T)N_{H_2}} . \tag{1}$$

This is independent of volume. Thus the number of the different species do not change, and the relative concentrations remain the same.  $\Box$ 

#### 8.2 Partial Pressure

Reif §8.14: Consider the following chemical reaction between ideal gases:

$$\sum_{i=1}^{m} b_i B_i = 0$$

Let the temperature be T, the total pressure be p. Denote the partial pressure of the ith species by  $p_i$ . Show that the law of mass action can be put into the form

$$p_1^{b_1} p_2^{b_2} \cdots p_m^{b_m} = K_p(T) \tag{2}$$

where the constant  $K_p(T)$  depends only on T.

The law of mass action can be written

$$N_1^{b_1} N_2^{b_2} \cdots N_m^{b_m} = K_N(T, V) = \zeta_1^{b_1} \zeta_2^{b_2} \cdots \zeta_m^{b_m}$$

We've already seen that we can rewrite  $\zeta_i(T,V) = V\zeta_i'(T)$ , thus we have

$$\left(\frac{N_1}{V_1}\right)^{b_1} \left(\frac{N_2}{V_2}\right)^{b_2} \cdots \left(\frac{N_m}{V_m}\right)^{b_m} = \zeta_1^{b_1} \zeta_2^{b_2} \cdots \zeta_m^{b_m}$$

The ideal gas law gives us  $\frac{N_1}{V_1} = \frac{p}{kT}$  hence

$$p_1^{b_1} p_2^{b_2} \cdots p_m^{b_m} = K_p(T)$$

where  $K_p(T) = \prod_{i=1}^m (kT\zeta_i'(T))^{b_i}$ .

### 8.3 Paramagnet

(a) This problem is similar to a random walk but instead of steps to the right and left we have spins that are up and down. Let  $s_{\pm} = \#$  of particles with  $s_i = \pm \frac{1}{2}$ .

Then

$$\Omega(s_+) = \binom{N}{s_+} = \frac{N!}{s_+!s_-!} \approx \frac{N^N}{s_+^{s_+}s_-^{s_-}} \sqrt{\frac{N}{2\pi s_+ s_-}} \qquad \text{using Stirling's approximations.}$$

Since  $s_+ + s_- = N$  and  $E = \mu_B H(s_- - s_+)$  we have  $s_\pm = \frac{N}{2} \mp a$  where  $a \equiv \frac{E}{2\mu_B H}$ . If we drop the square root term of the stirling approximation we get

$$\Omega(E) = N^N \left(\frac{N}{2} + a\right)^{-\left(\frac{N}{2} + a\right)} \left(\frac{N}{2} - a\right)^{-\left(\frac{N}{2} - a\right)}$$

for integer values of N/2 + a. Defining  $\delta E$  to coarse grain such that  $\mu_B H \ll \delta E \ll N\mu_B H$  this gives us

$$\Omega(E) = N^N \left(\frac{N}{2} + a\right)^{-\left(\frac{N}{2} + a\right)} \left(\frac{N}{2} - a\right)^{-\left(\frac{N}{2} - a\right)} \frac{\delta E}{2\mu_B H}$$

(b)

$$\ln \Omega = N \ln N - \left(\frac{N}{2} + a\right) \ln \left(\frac{N}{2} + a\right) - \left(\frac{N}{2} - a\right) \ln \left(\frac{N}{2} - a\right)$$

$$\beta = \frac{\partial \ln \Omega}{\partial E} = -\frac{\partial a}{\partial E} \left[1 + \ln \left(\frac{N}{2} + a\right) - 1 - \ln \left(\frac{N}{2} - a\right)\right]$$

$$= \frac{1}{2\mu_B H} \ln \left(\frac{N\mu_B H - E}{N\mu_B H + E}\right)$$

$$\Rightarrow T = \frac{2\mu_B H}{k} \left[\ln \left(\frac{N\mu_B H - E}{N\mu_B H + E}\right)\right]^{-1}$$

(c) Let  $b \equiv \frac{\mu_B H}{kT}$ , we then have

$$e^{2b} = \frac{N\mu_B H - E}{N\mu_B H + E}$$
  $\Rightarrow$   $E = \frac{N\mu_B H (1 - e^{2b})}{1 + e^{2b}} = -N\mu_B H \tanh b$ 

We also have

$$S = k \ln \Omega = k \left[ N \ln N - \left( \frac{N}{2} - \frac{N}{2} \tanh b \right) \ln \left( \frac{N}{2} - \frac{N}{2} \tanh b \right) - \left( \frac{N}{2} + \frac{N}{2} \tanh b \right) \ln \left( \frac{N}{2} + \frac{N}{2} \tanh b \right) \right]$$

Which reduces to

$$S = k \left[ N \ln N - \frac{Ne^b}{e^b + e^{-b}} \ln \left( \frac{Ne^b}{e^b + e^{-b}} \right) \right] - \frac{Ne^{-b}}{e^b + e^{-b}} \ln \left( \frac{Ne^{-b}}{e^b + e^{-b}} \right)$$

since  $1 - \tanh b = \frac{2e^{-b}}{e^b + e^{-b}}$  and  $1 + \tanh b = \frac{2e^b}{e^b + e^{-b}}$ .

$$S = kN \left[ \frac{e^b}{e^b + e^{-b}} \ln \left( \frac{e^b + e^{-b}}{e^b} \right) \frac{e^{-b}}{e^b + e^{-b}} \ln \left( \frac{e^b + e^{-b}}{e^{-b}} \right) \right]$$

$$= kN \left[ \ln(e^b + e^{-b}) - \frac{e^b \ln e^b + e^{-b} \ln e^{-b}}{e^b - e^{-b}} \right]$$

$$= kN \left[ \ln(2\cosh b) - \frac{be^b - be^{-b}}{e^b + e^{-b}} \right]$$

$$S = kN \left[ \ln \left( 2 \cosh \frac{\mu_B H}{kT} \right) - \frac{\mu_B H}{kT} \tanh \frac{\mu_B H}{kT} \right]$$

This gives us a Helmholtz free energy

$$F = E - TS = -N\mu_B H \tanh \frac{\mu_B H}{kT} - NkT \left[ \ln \left( 2 \cosh \frac{\mu_B H}{kT} \right) - \frac{\mu_B H}{kT} \tanh \frac{\mu_B H}{kT} \right]$$

$$F = -NkT \ln \left( 2 \cosh \frac{\mu_B H}{kT} \right)$$

(d) The canonical partition function is given by

$$Z = \prod_{i=1}^{N} e^{-\beta \mu_B H} + e^{\beta \mu_B H} = \left(2 \cosh \frac{\mu_B H}{kT}\right)^N$$

(e) From the partition function we can calculate

$$E = -\frac{\partial \ln Z}{\partial \beta} = -N\mu_B H \tanh \frac{\mu_B H}{kT} ,$$
 
$$S = k(\ln Z + \beta E) = Nk \left[ \ln(2\cosh \beta \mu_B H) - \beta \mu_B H \tanh \frac{\mu_B H}{kT} \right] ,$$
 
$$F = -kT \ln Z = -NkT \ln \left( 2\cosh \frac{\mu_B H}{kT} \right) ,$$

as above.

# 8.4 Quantum Harmonic Oscillator

(a) We have

$$Z_n(T) = e^{-\beta E_n} = e^{-\frac{\hbar\omega}{kT}(\frac{1}{2}+n)}$$

(b)

$$\Xi(\mu, T) = \sum_{n} Z_n e^{\beta \mu n} = e^{-\frac{\hbar \omega}{2kT}} \sum_{n} e^{\frac{n}{kT}(\mu - \hbar \omega)}$$
$$= \frac{e^{-\hbar \omega/2kT}}{1 - e^{(\mu - \hbar \omega)/kT}} = \frac{e^{-\mu/2kT}}{2\sinh[(\hbar \omega - \mu)/2kT]}$$

(c) For the energy we have

$$\begin{split} \bar{E} &= -\left(\frac{\partial \ln \Xi}{\partial \beta}\right)_{\mu,V} = -\frac{\partial}{\partial \beta} \left[ -\frac{\beta \mu}{2} - \ln 2 - \ln(\sinh(\beta(\hbar\omega - \mu)/2)) \right] \\ &= \frac{\hbar\omega}{2} \coth[(\hbar\omega - \mu)/2kT] \end{split}$$

For the entropy we have

$$S = \frac{\partial}{\partial T} [kT \ln \Xi] = \frac{\partial}{\partial T} \left[ -\frac{\mu}{2} - kT \ln(2\sinh[(\hbar\omega - \mu)/2kT)] \right]$$
$$= -k \ln \left[ 2\sinh\left(\frac{\hbar\omega}{2kT}\right) \right] - \frac{\hbar\omega}{2kT} \coth\left[\frac{\hbar\omega}{2kT}\right]$$

(d) Using the normal canonical parition function given in the problem we see,

$$\bar{E} = -\frac{\partial \ln Z}{\partial \beta} = \frac{\partial}{\partial \beta} \ln[\sinh(\beta \hbar \omega/2)] = \frac{\hbar \omega}{2} \coth(\beta \hbar \omega/2)$$

and

$$S = k \ln Z - \beta \bar{E} = -k \ln(2 \sinh(\beta \hbar \omega/2)) - \frac{\hbar \omega}{2kT} \coth(\hbar \omega/2kT)$$

Thus we see we must have  $\mu = 0$  for the oscillation quanta.

### 8.5 Equilibrium Fluctuations

(a) The grand canonical parition function is

$$\Xi = \sum_r e^{-\beta(E_r - \mu N)} \quad \Rightarrow \quad \left(\frac{\partial \Xi}{\partial \mu}\right)_{V,T} = \beta \bar{N} \Xi \quad \Rightarrow \quad \bar{N} = kT \left(\frac{\partial \ln \Xi}{\partial \mu}\right)_{V,T}$$

We also have

$$\left(\frac{\partial^2 \Xi}{\partial \mu^2}\right)_{VT} = \beta^2 \sum_{VT} (N^2 + 1)e^{-\beta(E_r - \mu N)} = \beta^2 \xi (1 + \overline{N^2})$$

Noting that

$$\left(\frac{\partial^2 \ln \Xi}{\partial \mu^2}\right)_{V,T} = \frac{1}{\Xi} \left(\frac{\partial^2 \Xi}{\partial \mu^2}\right)_{V,T} - \frac{1}{\Xi^2} \left(\frac{\partial \Xi}{\partial \mu}\right)_{V,T}^2 = \frac{1}{\Xi} \left(\frac{\partial^2 \Xi}{\partial \mu^2}\right)_{V,T} - \frac{\bar{N}^2}{(kT)^2}$$

Solving for  $\overline{N^2}$  we see

$$\overline{N^2} = \frac{(kT)^2}{\Xi} \left(\frac{\partial^2 \Xi}{\partial \mu^2}\right)_{VT} - 1 \approx (kT)^2 \left(\frac{\partial^2 \ln \Xi}{\partial \mu^2}\right)_{VT} + \bar{N}^2 = kT \left(\frac{\partial \bar{N}}{\partial \mu}\right)_{VT} + \bar{N}^2$$

which gives us

$$var N = kT \left(\frac{\partial \bar{N}}{\partial \mu}\right)_{V,T}$$

(b) The isothermal compressibility can be expressed as

$$\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial P} = -\frac{1}{v} \frac{\partial v}{\partial P}$$

where v = V/N is the volume per particle.

From the maxwell relation for F, we have

$$\begin{split} &-\left(\frac{\partial P}{\partial N}\right)_{T,V} &= & \left(\frac{\partial \mu}{\partial V}\right)_{T,N} \\ &-\frac{v}{N}\left(\frac{\partial P}{\partial v}\right)_{T} &= & -\frac{1}{N}\left(\frac{\partial \mu}{\partial v}\right)_{T} \end{split}$$

since  $dN = -\frac{N}{v}dv$ .

This gives us

$$\left(\frac{\partial P}{\partial \mu}\right)_T = \left(\frac{\partial P}{\partial v}\right)_T \left(\frac{\partial \mu}{\partial v}\right)_T^{-1} = \frac{1}{v}$$

Taking another derivative with respect to  $\mu$  we see

$$\left(\frac{\partial^2 P}{\partial \mu^2}\right)_{T,N} = \frac{\partial}{\partial \mu} \frac{1}{v} = \frac{1}{Nv^2} \left(\frac{\partial V}{\partial \mu}\right)_{T,N} = \frac{1}{Vv} \left(\frac{\partial N}{\partial P}\right)_{T,V} = -\frac{1}{Vv^2} \frac{V}{v} \left(\frac{\partial v}{\partial P}\right)_{T} = -\frac{1}{v^3} \frac{\partial v}{\partial P}$$
$$\left(\frac{\partial^2 P}{\partial \mu^2}\right)_{T,N} = \frac{1}{v^2} \kappa_T$$

Noting that  $PV = kT \ln \Xi$  and using the second last equation in part (a) we see

$$var N = kTV \left(\frac{\partial^2 P}{\partial \mu^2}\right)_{T,N} = \frac{kTV\kappa_T}{v^2} = \frac{kT\bar{N}^2\kappa_T}{V}$$

8.6 Grand Canonical Ensemble

(a) The grand canonical ensemble for an ideal gas where V, T, and N can vary is given as

$$\Xi = \sum_{N=0}^{\infty} e^{\beta \mu N} Z_N$$

where

$$Z_n = \frac{1}{N!} V^N \left[ \frac{2\pi m}{h^2 \beta} \right]^{3N/2}$$

is the canonical partition function.

This gives

$$\Xi = \sum_{N=0}^{\infty} \frac{1}{N!} \left( V e^{\beta \mu} \left[ \frac{2\pi m}{h^2 \beta} \right]^{3/2} \right)$$

Recognizing this as a Taylor series for an exponential we see

$$\Xi = \exp\left[Ve^{\beta\mu} \left(\frac{2\pi m}{h^2\beta}\right)^{3/2}\right]$$
 (3)

(b) We have

$$pV = kT \ln \Xi = kTV e^{\beta \mu} \left(\frac{2\pi m}{h^2 \beta}\right)^{3/2}$$
$$p = kT e^{\mu/kT} \left(\frac{2\pi m}{h^2 \beta}\right)^{3/2}$$

Solving for the chemical potential  $\mu$ , we see

$$\mu = kT \ln \left[ \frac{p}{kT} \left( \frac{h^2 \beta}{2\pi m} \right)^{3/2} \right].$$