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8.1 Chemical Equilibrium

Reif §8.12: At a fixed temperature T = 1200K the gases

CO2 +H2 
 CO +H2O

are in chemical equilibrium in a vessel of volume V . If the volume of this ves-
sel is increased, its temperature being maintained constant, does the relative
concentration of CO2 increase, decrease, or remain the same?

At constant V, T in equilibrium, F is minimized. This imples that

dF = 0 = −S��*
0

dT − p���*
0

dV +
∑
i

µidNi = µCO2dNCO2 + µH2 + dNH2 + µCOdNCO + µH2OdNH20

From the chemical equation we know that dNCO2 = dNH2 = −dNCO = −dNH2O and thus

µCO2 + µH2 − µCO − µH2O = 0

But we also know (from Reif §8.10.24) that

µ = −kT ln
ζ ′(T )V

N

where ζ ′ is the single species partition function with the volume dependance removed. Hence
we have

ln
ζ ′CO2

(T )V

NCO2

+ ln
ζ ′H2

(T )V

NH2

− ln
ζ ′CO(T )V

NCO

− ln
ζ ′H2O

(T )V

NH2O

NCO2 =
ζ ′CO2

(T )ζ ′H2
(T )NCONH2O

ζ ′CO(T )ζ ′H2O
(T )NH2

. (1)

This is independant of volume. Thus the number of the different species do not change, and
the relative concentrations remain the same. 2
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8.2 Partial Pressure

Reif §8.14: Consider the following chemical reaction between ideal gases:

m∑
i=1

biBi = 0

Let the temperature be T , the total pressure be p. Denote the partial pressure
of the ith species by pi. Show that the law of mass action can be put into the
form

pb11 p
b2
2 · · · pbmm = Kp(T ) (2)

where the constant Kp(T ) depends only on T .

The law of mass action can be written

N b1
1 N

b2
2 · · ·N bm

m = KN(T, V ) = ζb11 ζ
b2
2 · · · ζbmm

We’ve already seen that we can rewrite ζi(T, V ) = V ζ ′i(T ), thus we have(
N1

V1

)b1 (N2

V2

)b2
· · ·
(
Nm

Vm

)bm
= ζ ′

b1
1 ζ
′b2
2 · · · ζ ′

bm
m

The ideal gas law gives us N1

V1
= p

kT
hence

pb11 p
b2
2 · · · pbmm = Kp(T )

where Kp(T ) =
∏m

i=1(kTζ
′
i(T ))bi . 2
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8.3 Paramagnet

(a) This problem is similar to a random walk but instead of steps to the right and left we
have spins that are up and down. Let s± =# of particles with si = ±1

2
.

Then

Ω(s+) =

(
N

s+

)
=

N !

s+!s−!
≈ NN

s
s+
+ s

s−
−

√
N

2πs+s−
using Stirling’s approximations.

Since s+ + s− = N and E = µBH(s− − s+) we have s± = N
2
∓ a where a ≡ E

2µBH
. If

we drop the square root term of th term of the stirling approximation we get

Ω(E) = NN

(
N

2
+ a

)−(N
2
+a)(

N

2
− a
)−(N

2
−a)

for integer values of N/2 + a. Defining δE to coarse grain such that µBH � δE �
NµBH this gives us

Ω(E) = NN

(
N

2
+ a

)−(N
2
+a)(

N

2
− a
)−(N

2
−a)

δE

2µBH

(b)

ln Ω = N lnN −
(
N

2
+ a

)
ln

(
N

2
+ a

)
−
(
N

2
− a
)

ln

(
N

2
− a
)

β =
∂ ln Ω

∂E
= − ∂a

∂E

[
1 + ln

(
N

2
+ a

)
− 1− ln

(
N

2
− a
)]

=
1

2µBH
ln

(
NµBH − E
NµBH + E

)
⇒ T =

2µBH

k

[
ln

(
NµBH − E
NµBH + E

)]−1
(c) Let b ≡ µBH

kT
, we then have

e2b =
NµBH − E
NµBH + E

⇒ E =
NµBH(1− e2b)

1 + e2b
= −NµBH tanh b

We also have

S = k ln Ω = k

[
N lnN −

(
N

2
− N

2
tanh b

)
ln

(
N

2
− N

2
tanh b

)
−
(
N

2
+
N

2
tanh b

)
ln

(
N

2
+
N

2
tanh b

)]
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Which reduces to

S = k

[
N lnN − Neb

eb + e−b
ln

(
Neb

eb + e−b

)]
− Ne−b

eb + e−b
ln

(
Ne−b

eb + e−b

)
since 1− tanh b = 2e−b

eb+e−b and 1 + tanh b = 2eb

eb+e−b .

S = kN

[
eb

eb + e−b
ln

(
eb + e−b

eb

)
e−b

eb + e−b
ln

(
eb + e−b

e−b

)]
= kN

[
ln(eb + e−b)− eb ln eb + e−b ln e−b

eb − e−b

]
= kN

[
ln(2 cosh b)− beb − be−b

eb + e−b

]

S = kN

[
ln

(
2 cosh

µBH

kT

)
− µBH

kT
tanh

µBH

kT

]
This gives us a Helmholtz free energy

F = E − TS = −NµBH tanh
µBH

kT
−NkT

[
ln

(
2 cosh

µBH

kT

)
− µBH

kT
tanh

µBH

kT

]

F = −NkT ln

(
2 cosh

µBH

kT

)
(d) The canonical partition function is given by

Z =
N∏
i=1

e−βµBH + eβµBH =

(
2 cosh

µBH

kT

)N

(e) From the partition function we can calculate

E = −∂ lnZ

∂β
= −NµBH tanh

µBH

kT
,

S = k(lnZ + βE) = Nk

[
ln(2 cosh βµBH)− βµBH tanh

µBH

kT

]
,

F = −kT lnZ = −NkT ln

(
2 cosh

µBH

kT

)
,

as above. 2
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8.4 Quantum Harmonic Oscillator

(a) We have

Zn(T ) = e−βEn = e−
~ω
kT ( 1

2
+n)

(b)

Ξ(µ, T ) =
∑
n

Zne
βµn = e−

~ω
2kT

∑
n

e
n
kT

(µ−~ω)

=
e−~ω/2kT

1− e(µ−~ω)/kT
=

e−µ/2kT

2 sinh[(~ω − µ)/2kT ]

(c) For the energy we have

Ē = −
(
∂ ln Ξ

∂β

)
µ,V

= − ∂

∂β

[
−βµ

2
− ln 2− ln(sinh(β(~ω − µ)/2))

]
=

~ω
2

coth[(~ω − µ)/2kT ]

For the entropy we have

S =
∂

∂T
[kT ln Ξ] =

∂

∂T

[
−µ

2
− kT ln(2 sinh[(~ω − µ)/2kT ]

]
= −k ln

[
2 sinh

(
~ω

2kT

)]
− ~ω

2kT
coth

[
~ω

2kT

]
(d) Using the normal canonical parition function given in the problem we see,

Ē = −∂ lnZ

∂β
=

∂

∂β
ln[sinh(β~ω/2)] =

~ω
2

coth(β~ω/2)

and

S = k lnZ − βĒ = −k ln(2 sinh(β~ω/2))− ~ω
2kT

coth(~ω/2kT )

Thus we see we must have µ = 0 for the oscillation quanta.

2
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8.5 Equilibrium Fluctuations

(a) The grand canonical parition function is

Ξ =
∑
r

e−β(Er−µN) ⇒
(
∂Ξ

∂µ

)
V,T

= βN̄Ξ ⇒ N̄ = kT

(
∂ ln Ξ

∂µ

)
V,T

We also have (
∂2Ξ

∂µ2

)
V,T

= β2
∑

(N2 + 1)e−β(Er−µN) = β2ξ(1 +N2

Noting that(
∂2 ln Ξ

∂µ2

)
V,T

=
1

Ξ

(
∂2Ξ

∂µ2

)
V,T

− 1

Ξ2

(
∂Ξ

∂µ

)2

V,T

=
1

Ξ

(
∂2Ξ

∂µ2

)
V,T

− N̄2

(kT )2

Solving for N2 we see

N2 =
(kT )2

Ξ

(
∂2Ξ

∂µ2

)
V,T

− 1 ≈ (kT )2
(
∂2 ln Ξ

∂µ2

)
V,T

+ N̄2 = kT

(
∂N̄

∂µ

)
V,T

+ N̄2

which gives us

varN = kT

(
∂N̄

∂µ

)
V,T

(b) The isothermal compressibility can be expressed as

κT = − 1

V

∂V

∂P
= −1

v

∂v

∂P

where v = V/N is the volume per particle.

From the maxwell relation for F , we have

−
(
∂P

∂N

)
T,V

=

(
∂µ

∂V

)
T,N

− v

N

(
∂P

∂v

)
T

= − 1

N

(
∂µ

∂v

)
T

since dN = −N
v
dv.

This gives us (
∂P

∂µ

)
T

=

(
∂P

∂v

)
T

(
∂µ

∂v

)−1
T

=
1

v
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Taking another derivative with respect to µ we see(
∂2P

∂µ2

)
T,N

=
∂

∂µ

1

v
=

1

Nv2

(
∂V

∂µ

)
T,N

=
1

V v

(
∂N

∂P

)
T,V

= − 1

V v2
V

v

(
∂v

∂P

)
T

= − 1

v3
∂v

∂P(
∂2P

∂µ2

)
T,N

=
1

v2
κT

Noting that PV = kT ln Ξ and using the second last equation in part (a) we see

varN = kTV

(
∂2P

∂µ2

)
T,N

=
kTV κT
v2

=
kTN̄2κT

V

2

8.6 Grand Canonical Ensemble

(a) The grand canonical ensemble for an ideal gas where V , T , and N can vary is given as

Ξ =
∞∑
N=0

eβµNZN

where

Zn =
1

N !
V N

[
2πm

h2β

]3N/2
is the canonical partition function.

This gives

Ξ =
∞∑
N=0

1

N !

(
V eβµ

[
2πm

h2β

]3/2)
Recognizing this as a Taylor series for an exponential we see

Ξ = exp

[
V eβµ

(
2πm

h2β

)3/2
]

(3)

(b) We have

pV = kT ln Ξ = kTV eβµ
(

2πm

h2β

)3/2

p = kTeµ/kT
(

2πm

h2β

)3/2

7



Solving for the chemical potential µ, we see

µ = kT ln

[
p

kT

(
h2β

2πm

)3/2
]
.

2
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