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9.1 One Dimensional Paramagnet

(a) We have τ1 = σ1, τ2 = σ1/σ2, τ3 = σ3/τ1τ2 = σ3/σ2.

Induction: Assume τi = σi/σi−1, for all i > 1. if this is true for all i ≤ n, then we must
have

τn+1 =
σn+1∏n
i=1 τi

=
σn+1

σ1

∏n
i=2

σi
σi−1

=
σn+ 1

σn
.

QED.

(Since σi = ±1 we can also write: τi = σi−1σi.

(b)

Z =
∑
τ1...τN

exp

[
J

2kT
(
N−1∑
i=1

(τ1τ2 . . . τi)(τ1 . . . τi + 1))

]

=
∑
τ1...τN

exp

[
J

2kT
(
N−1∑
i=1

(τ1τ2 . . . τi)
2τi+1

]

=
∑
τ1...τN

exp

[
J

2kT

N∑
i=2

τi

]

= 2
∑
τ2...τN

exp

[
J

2kT

N∑
i=2

τi

]

This is twice that of a partition functino of N − 1 particles with B′ = J/2µB and
J ′ = 0.

⇒ Z = 2(eJ/2kT + e−J/2kT )N−1 = 2N coshN−1(J/2kT )

(c) We have σ1σi+p = τi+1 . . . τi+p since (τi . . . τi)
2 = 1.
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This gives us

σ1σi+p =

∑
τ1...τN

τi+1 . . . τi+pe
J

2kT

∑N
j=2 τj∑

τ1...τN
e

J
2kT

∑N
j=2 τj

=

∑
τi+1...τi+p

∏i+p
j=i+1 τje

Jτj/2kT∑
τi+1...τi+p

∏i+p
j=i+1 e

Jτj/2kT

=
(eJ/2kT − e−J/2kT )p

(eJ/2kT + e−J/2kT )p
= tanhp(J/2kT )

This implies that
lnσiσi+p = p ln(tanh(J/2kT ))

which gives an exponential dependence of the spin-spin correlation function on the
distance p, where the correlation length is given by

ζ = −(ln[tanh(J/2kT )])−1 =
1

ln[coth(J/2kT )]

2
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9.2 Bosons in a Harmonic Trap

Solutions posted next week This problem is very similar to the Bose gas in a container, with
hamiltonian

H =
p2

2m
+

1

2
mω2r2 (1)

(a) The energy of one particle in a single energy level nx, ny, nz is given by

εn =
3

2
~ω + (nx + ny + nz)~ω =

3

2
~ω + n~ω

where n = nx + ny + nz.

Let nr = the # of bosons in the rth energy level. The grand canonical partition
function is then

Ξ =
∑

n1,n2,...

e−β(n1E1+n2E2+...)eβµ(n1+n2+...)

=

(
∞∑

n0=0

e−β(E0−µ)n0

)(
∞∑

n1=0

e−β(E1−µ)n1

)(
∞∑

n2=0

e−β(E2−µ)n2

)
. . .

=
∞∏

nx,ny ,nz=0

(
1

1− e−β(εn−µ)

)
by the geometric series

(b) We know

N̄ =
1

β

(
∂

∂µ
ln Ξ

)
β

From part (a) we have

ln Ξ = −
∞∑

nx,ny ,
nz=0

(
1− e−β(εn−µ)

)
Therefore

N̄ =
1

β

∞∑
nx,ny ,
nz=0

βe−β(εn−µ)

1− e−β(εn−µ)
=

∞∑
nx,ny ,
nz=0

1

eβ(εn−µ) − 1

(c) The chemical potential µ(N, T ) must be less than the ground state energy ε0 for all
T , otherwise the lowest state would have negative occupation number! At very low
T , the chemical potential goes to ε0. Thus the largest number any excited state can
have is 1/(e(εn−ε0)/kT − 1). As T → 0 the number of particles in the excited states will
fall below N , and there the remaining particles must occupy the ground state. The
highest temperature at which the condensate exists is referred to as the Bose-Einstein
tranisition temperature and we shall denote it by Tc.
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(d) In order to find the critical temperature Tc we examine the number of particles in the
excited state. To find an upper bound on the total number of bosons outside of the
groundstate we want to consider

N̄ex = N̄ − N̄0 =
∞∑

nx,ny ,
nz=0

1

eβ(εn−µ) − 1
− 1

eβ(ε0−µ) − 1
.

it will be useful to rewrite this as

N̄ex =
∞∑
n=1

g(n)

eβ(εn−µ) − 1

where the degeneracy in choosing n = nx + ny + nz is given by

g(n) =

(
m+ 2

2

)
=

(m+ 2)(m+ 1)

2

since the number of ways of divvying up m parcels of energy into 3 dimensions is
equivalent to choosing 2 “dividers” out of a list of m + 2 possible energy units and
dividers.

Now, we approximate the sum by an integral,

N̄ex =
1

2

∞∑
n=1

(n+ 2)(n+ 1)

eβ(~ωn+ 3
2
~ω−µ) − 1

≈ 1

2

∫ ∞
n=1

dn
(n+ 2)(n+ 1)

eβ(~ωn+ 3
2
~ω−µ) − 1

=
1

2

1

β~ω

∫ ∞
β~ω

dx
1

ex+y − 1

[(
x

β~ω

)2

+ 3

(
x

β~ω

)
+ 2

]

=
1

2

1

β~ω

∫ ∞
β~ω

dx
1

ex+y − 1

[(
x

β~ω

)2

+ (3− 2y)

(
x

β~ω

)
+ (y − 1)(y − 2)

]
where x = β~ωm, y = 3

2
~ω − µ.

The integrals evaluate to∫ ∞
α

dx
1

ex − 1
= − ln(1− e−α) = ln(1/α) +O(α)∫ ∞

α

dx
x

ex − 1
=

π2

6
−O(α)∫ ∞

α

dx
x

ex − 1
= 2ζ(3)−O(α) ≈ 2.4−O(α)

And so, if β~ω � 1, y � 1 (more on these assumptions later)

N̄ex =
1

(β~ω)3
[ζ(3) +O(β~ω + y)] .
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Bose Einstein condensation occurs when there is a macroscopic number of atoms in
the ground state, that is, when

N̄ex < N̄

or

kTc =
~ω

(ζ(3))1/3
N̄1/3.

Are the parameters we assumed to be small actually small? We took β~ω � 1; we
just found that at the critical temperature βc~ω ∼ 1/N̄3. That’s very small. We
also know that the number of particles in the ground state is given by N̄0 = 1

ey−1
or

y = ln(1 + 1
N̄0

) ≈ 1
N0

. This is a small number even if the condensate has 10 particles,

but at this point it has a number on the order of N̄ , so it’s even smaller.

(e) What happens in lower dimensions? The calculation is similar, except that g(n) changes.
In two dimensions this simply leads to kT 2D

c = ~ω√
3π
N̄1/2.

Things are more complicated in one dimension. Here, g(n) = 1 and the integral is

N̄1D
ex =

1

2

1

β~ω

∫ ∞
β~ω

dx
1

ex+y − 1
≈ 1

2

ln(1/β~ω)

β~ω

from which we find

kT 1D
c ≈ 2~ω

N̄

ln N̄
.

This is a condensation temperature, and we can calculate it for any finite system. But
what happens as we increase the number of particles in the system? If we simply take
N̄ → ∞, the term N̄/ ln N̄ still increases. However, we should increase not just the
particle number but all extrinsic sizes, like the volume. In particular, if we write the
Hamiltonian as

H =
p2

2m
+

1

2
mω2x2 =

p2

2m
+

1

2
V
(x
L

)2

we can rewrite

kT 3D
c =

~
√
V/m

(ζ(3)1/3

(
N̄

L

)1/3

,

kT 2D
c =

~
√
V/m√
3π

(
N̄

L

)1/2

,

kT 1D
c =

2~
√
V/m

ln N̄

(
N̄

L

)
.
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In two or more dimensions, the critical temperature remains constant. In one di-
mension, the critical temperature drops logarithmically as we increase the size of the
system, and in the thermodynamic limit, with N̄ →∞, L̄→∞, N̄/L̄ = const., it goes
to zero. So we say that a harmonic oscillator is only condensed at zero temperature in
one dimension.

The calculation is very similar for an unconfined gas, except that the correct quantum
numbers to use are the momenta, k, and the energies are given by ε ∝ k2. We get

N̄ex =

∫ kmax

kmin

dDk
1

eβεk − 1
∝
∫ εmax

εmin

dε
ε
D
2
−1

eβε − 1
.

Compare this to what we had above:

• In three dimensions we have ε in the numerator, and we will have regular conden-
sation.

• In two dimensions we have 1 in the numerator, like we had for a one-dimensional
trap above. This means we only have a BEC at zero temperature.

• In one dimension, things are even worse - we have 1/ε in the numerator. This
means there is no condensation in the thermodynamic limit!

2
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9.3 Velocity Distribution of a Fermi Gas

(a) Clearly v̄x = 0 since each particle is as likely to be moving forward as backwards.

We do not have a velocity distribution but we have calculated the energy dependent
density of states g(E). From class and from Reif, we know for a Fermi gas g(E) ∝ E1/2.
We also know

Ē =
1

2
m(v2

x + v2
y + v2

z) =
3

2
mv2

x. (2)

Thus we have v2
x = 2Ē/3m.

Let g(E) = CE1/2 where C is a constant to be determined by the normalization
condition

1 =

∫ ∞
0

g(e)dE =

∫ µ

0

CE1/2dE =
2

3
Cµ3/2 (3)

since only the levels up to energy µ are filled at T = 0. Hence C = 3
2
µ−3/2.

Now to calculate Ē:

Ē =

∫ mu

0

g(E)EdE =

∫ µ

0

3

2
µ−3/2E3/2dE

=
3

2
mu−3/2

(
2

5
mu5/2

)
=

3

5
µ .

Thus we have

v2
x =

2µ

5m
. (4)

(b) If the temperature were not zero, but still much smaller than the Germi temperature,
v2
x would increase. This can be understood with the following picture:

For T ¿ 0, electrons move from low energy states to higher energy states. The temper-
ature dependence of this increase in barE can be estimated as follows

∆Ē ≈ [g(µ)(kT )](kT ) ∝ T 2 (5)
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where the term in square brackets is approximately the number of energy levels that
shift, which are shifted by the amount (kT ).

The exact calculation is more difficult (see Reif p.396-397), which gives the result

∆Ē =
1

N

π2

3
(kT )2 V m

2π2~2

(
3π2N

V

)1/3

. (6)

With ∆v2
x = 2

3m
∆Ē the increase in v2

x.

2
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9.4 Electron Gas

Reif §9.17: Consider an ideal gas of N electrons in a volume V at absolute zero.

(a) Calculate the total mean energy Ē of this gas.

(b) Express Ē in terms of the Fermi energy µ.

(c) Show that Ē is properly an extensive quantity, but that for a fixed volume V ,
Ē is not proportional to the number N of particles in the container. How do
you account for this last result despite the fact that there is no interaction
potential between the particles?

(a) We have

Ē =

∫ µ

0

ερ(ε)dε where ρ(ε) =

(
2m

~2

)3/2
V

2π
ε1/2

where we’ve included the spin in the density of states. Carrying out hte integral we
see

Ē =

(
2m

~2

)3/2
V

2π2

∫ µ

0

ε3/2dε =

(
2m

~2

)3/2
V

2π2

2

5
µ5/2

Giving us a chemical potential

µ(T = 0) =
~2

2m
(3π2N/V )2/3 (7)

and the average energy

Ē =
~2

2m

V

5π2

(
3π2N/V

)5/3

(b) Rewriting we see that

Ē =
3

5
µN

which matches with our result from problem 10.3.

(c) If we start adding electrons to the box without changing the volume we are foricing the
electrons to fill up the lowest energy states, without expanding the number of these
energy states. Thus we expect that the energy should not scale proportionally with
number, if the volume isn’t also scaled. Indeed we see that if we scale both volume
and number by α we get

Ē(αN, αV ) =
~2

2m

αV

5π2

(
3π2αN/αV

)5/3
= αĒ (8)

Ē(αN, V ) =
~2

2m

V

5π2

(
3π2αN/V

)5/3
= Ēα5/3 (9)

which clearly is not linear.

2
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9.5 Two Particles

(a) Distinguishable Particles Possible states:

ε1 ε2

0 0

ε ε

3ε 3ε

0 ε

ε 0

0 3ε

3ε 0

ε 3ε

3ε ε

Z = e0 + e−2βε + e−6βε + 2e−βε + 2e−3βε + 2e−4βε

(b) Fermions are indistinguishable and do not want to be in the same energy level. Possible
states:

ε1 ε2

0 ε

0 3ε

ε 3ε

Z = e−βε + e−3βε + e−4βε

(c) Bosons are indistinguishable but can be in the same energy level. Possible states:

ε1 ε2

0 0

0 ε

0 3ε

ε 3ε

3ε 3ε

Z = e0 + e−βε + e−2βε + e−3βε + e−4βε + e−6βε
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