PHYS 3341 Quiz 1

Prof Itai Cohen, Fall 2013 Thursday Oct. 3rd, 2013

Name:

Read all of the following information before starting the exam:

- Put your name on the exam **now**.
- Show all work, clearly and in order, if you want to get full credit.
- Circle or otherwise indicate your final answers.

Problem $\#$	Score
1	/10
2	/40
Total	/50

- It is your responsibility to make sure that you have all of the pages!
- Good luck!

1. Ergodicity (10 points) Explain in your own words the utility of ergodicity is in the development of statistical mechanics.

The assumption of ergodicity - that over long periods the system spends equal time in all accessible configurations - allows us to do away with the particulars of how the system traverses its phase space and what its initial conditions are. It sets up the basic tools of calculation - ensembles, partition functions, and so on - that allow us to calculate macroscopic parameters without dealing with microscopic states.

2. Streched Hot Rod (40 points) An elastic rod of length L at a temperature T has a small amount of work done ON the system -dW given by

$$-dW = (-\alpha(T - T_0) + k_T(L - L_0))dL$$

where T_0 and L_0 are the reference temperature and length, k_T is the spring constant of the rod at constant T and α and k_T are positive constants.

a. (5 pts) What is the generalized force F that is conjugate to the external parameter L? (hint: what's the relation between dE and dW? are the other terms related to L?)

$$F = -\left(\frac{\partial E}{\partial L}\right) = \frac{\partial W}{\partial L} = \alpha(T - T_0) - k_T(L - L_0)$$

b. (5 pts) What is the thermodynamic relation for the energy? What Maxwell relation follows?

$$dE = TdS - FdL$$

This gives us the Maxwell relation

$$\left(\frac{\partial T}{\partial L}\right)_S = -\left(\frac{\partial F}{\partial S}\right)_L$$

c. $(5 \ pts)$ Construct a thermodynamic potential for which the fundamental variables are T and L. What Maxwell relation follows?

Starting with dE = TdS - FdL we can perform the Legendre transform

$$\mathcal{F} = E - TS \Rightarrow d\mathcal{F} = -SdT - FdL$$

This gives us the Maxwell relation

$$\left(\frac{\partial S}{\partial L}\right)_T = \left(\frac{\partial F}{\partial T}\right)_L$$

d. (15 pts) Assume the rod initially has length L_1 and temperature T_1 . In an adiabatic process, it is stretched to length L_2 . Using one of the Maxwell relations above, find T_2 , the temperature of the rod at the end of the process.

Express T_2 in terms of α , kT, L_0 , T_0 , L_1 , T_1 and C_L , the rod's heat capacity at constant length. (hint: make use of C_L . Remember $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$)

We have

$$\left(\frac{\partial T}{\partial L}\right)_S = -\left(\frac{\partial F}{\partial S}\right)_L = -\alpha \left(\frac{\partial T}{\partial S}\right)_L = -\alpha \left(\frac{C_L}{T}\right)^{-1}$$

and so

$$\int_{T_1}^{T_2} \frac{1}{T} dT = -\frac{\alpha}{C_L} \int_{L_1}^{L_2} dL$$
$$\ln(T_2/T_1) = -\frac{\alpha}{C_L} (L_2 - L_1)$$
$$T_2 = T_1 e^{-\frac{\alpha(L_2 - L_1)}{C_L}}$$

e. (10 pts) Next, the temperature is held fixed at T_2 and the rod is compressed back to L_1 . Find the change in entropy in this process.

We have

$$\left(\frac{\partial S}{\partial L}\right)_T = \left(\frac{\partial F}{\partial T}\right)_L = \alpha$$
$$\Delta S = -\alpha(L_2 - L_1)$$

Possible Useful Formulas

$$\begin{split} n! &\approx n^n e^{-n} \sqrt{2\pi n} \qquad \Gamma(n+1) \approx n^n e^{-n} \sqrt{2\pi n} \\ & \begin{pmatrix} N \\ n \end{pmatrix} p^n q^{N-n} \approx \frac{1}{\sqrt{2\pi Npq}} e^{-(n-Np)^2/(2Npq)} \\ & \int_0^\infty dx e^{-ax^2} = \frac{\sqrt{\pi}}{2} a^{-1/2} \\ & \int_0^\infty dx x^2 e^{-ax^2} = \frac{\sqrt{\pi}}{2} a^{-3/2} \\ \cosh(x) = \frac{e^x + e^{-x}}{2} \qquad \sinh(x) = \frac{e^x - e^{-x}}{2} \\ \frac{d}{dx} \cosh(x) = \sinh(x) \qquad \frac{d}{dx} \cosh(x) = \sinh(x) \\ \tanh(x) = \frac{\sinh(x)}{\cosh(x)} \qquad \frac{d}{dx} \tanh(x) = \frac{1}{\cosh^2(x)} \\ PV = NkT \qquad E = \frac{d}{2}NkT \\ dE = TdS - pdV \qquad dH = TdS + Vdp \\ dF = -SdT - pdV \qquad dG = -SdT + Vdp \\ dF = -SdT - pdV \qquad dG = -SdT + Vdp \\ C_v = T \left(\frac{\partial S}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V \qquad C_p = T \left(\frac{\partial S}{\partial T}\right)_P \\ \beta = \frac{\partial \ln \Omega}{\partial E} \qquad S = k \ln \Omega \\ \bar{X}_a = \frac{1}{\beta} \frac{\partial \ln \Omega}{\partial \beta} \qquad \bar{p} = \frac{1}{\beta} \frac{\partial \ln \Omega}{\partial V} \\ \bar{E} = -\frac{\partial \ln Z}{\partial \beta} \qquad S = k \ln 2 - k\beta \left(\frac{\partial \ln Z}{\partial \beta}\right)_{V,N} \\ p = kT \left(\frac{\partial \ln Z}{\partial \mu}\right)_{V,T} \qquad S = k \ln \Xi - k\beta \left(\frac{\partial \ln Z}{\partial \beta}\right)_{V,\mu} \\ pV = kT \ln \Xi \\ \nabla \cdot E = \frac{\rho}{\epsilon_o} \qquad \nabla \times H = J + \epsilon \frac{\partial E}{\partial t} \\ \nabla \cdot B = 0 \qquad \nabla \times H = J + \epsilon \frac{\partial E}{\partial t} \\ v_{\text{swallow}}(\text{unladen}) = \qquad \text{African or European?} \end{split}$$

Scrap Page

(please hand these pages in with the test packet)

Scrap Page

(please hand these pages in with the test packet)

Scrap Page

(please hand these pages in with the test packet)