








by the competition between bending energy of the undeformed shell
and stretching energy contained in the creased region.
To confirm this simple model, we again use FEA to determine

the conditions under which there is a stable snap. For linear
elastic materials this system is fully characterized by two di-
mensionless numbers, the reduced crease radius α and the Föppl–
von Kármán number γ. We report the total energy for axisym-
metric solutions with γ = 104 (corresponding to the elastomeric
hemispheres discussed here) as a function of the indenter dis-
placement (h) and the normalized crease radius (α) in Fig. 5B. We
find that, beyond a critical crease radius, there is a bifurcation of
stability and the energy curves develop a well-defined local mini-
mum (solid) and maximum (dashed), with the region between
these curves denoting a basin of attraction for the folded state.
By examining creased hemispherical shells over a range of γ, we

construct a phase diagram for stability of creased spherical shells
(Fig. 5C). Through numerical simulations, we find that for in-
creasing thickness, larger values of the crease radius are required to
create a stable snap. Moreover, we conduct a series of experiments
on spherical shells with a range of γ and α, and identify the stability
of the folded state. These reveal a boundary between bistability and
monostability that is in excellent agreement with our numerical
calculations. Further bolstering this, for some samples we observe
the presence of folded states that are temporarily stable (for times
on the order of seconds)––the proximity of these samples to the
predicted phase boundary further demonstrates the agreement
between experiments and simulation.

Conclusion
The ability to introduce tunable bistability into a curved shell via
structural inhomogeneity represents a major step in generating
programmable materials with rapid actuation capabilities. While
inhomogeneous shells have already been predicted to serve as a
template for constructing tunable shapes (49), and used to design
next-generation substances such as lock-and-key colloids (50) or
controllably collapsible capsules (39), our geometric design prin-
ciple adds further insight into controlling the mechanics of thin
shells. Because the speed of the snap arises from stretching in the
shell, inertia mediates the transition at the speed of sound in the
material (Movies S1–S3), and crucially, the snap is unimpeded by
poroelasticity or hydraulic damping as displayed in many natural
snapping systems (51). Our work lays the foundation for de-
veloping non-Euclidean origami, in which multiple folds and ver-
tices combine to create new structures. Indeed, smoothly
deployable structures built from non-Euclidean surfaces could be
engineered using origami-like principles that build upon the iso-
metric design rules for negative Gaussian curvature surfaces that
we derive here. Finally, because the principles and methods we
describe are purely geometric, they open the door for developing
design paradigms independent of length scale and material system.

Materials and Methods
Shell Fabrication. Three-dimensional models of different geometries were
designed in a CAD software. The non-Euclidean geometries (helicoid and
hemisphere) were fabricated using a commercial 3D printer (Stratys Inc.,
uDimensions) to obtain two-part molds with embossed features to generate
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regions of monostability (red shading) and bistability (green shading). Each experimental data point was analyzed for at least three shells of appropriate parameters.
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creases (Fig. 1C). The hemispherical shells were fabricated using poly(vinyl si-
loxane) by curing a commercially available two-part base–catalyst mixture
[Zhermack SpA Elite Double 32, Elastic modulus ðYÞ= 1.3MPa]. Before filling the
mold, the 1.2:1 base:catalyst mixture was degassed to remove bubbles that may
otherwise serve as defects. The helicoid samples were fabricated using poly
(caprolactone) (Monomer-Polymer & Dajac Labs, 1258, Y = 353MPa), by melting
polymer in the mold at 70 °C, and allowing it to cool. The hemispherical and
helicoid shells studied were 1 mm thick, and the crease had a rectangular cross-
section 0.75 mm deep (e= 0.75) and 1 mm wide along the appropriate curve.
Only samples without structural defects were included for testing. Owing to
their Euclidean nature, cylinders could be fabricated using a conventional 2D
technique. Here, we use a commercial laser cutter (Epilog Laser, Zing 16) to score
a poly(ethylene terephthalate) sheet (Grafix Dura-Lar, 120 μm thick, Y ∼ 5 GPa)
with a curve. The shape of this plane curve is set to be sinusoidal such that when
the sheet is wrapped to form a cylinder, the resulting space curve is the in-
tersection between a plane and a cylinder at an oblique angle (θ). The scored
sine wave was scaled to different amplitudes to obtain the combinations of
d, θ discussed.

Helicoid Characterization. Helicoids with different creases were clamped on
one edge, and deformed along the crease using a rigid indenter by hand.
Composite images using frames at equal time intervals from these movies
were created by using alpha blending. For the sample with a snap-through,
frames were chosen to be 300 ms apart. For the sample with a planar crease,
frames are 1 and 6 s apart for deformation on either side of the torsional

hinge. Lastly, for the sample with helical crease, frames were 1.5 and 1.5 s
apart for deformation on either side of the torsional hinge.

Load Displacement Characterization. A custom-built force displacement de-
vice, combining a linear translation stage (Zaber Technologies Inc., T-LSM 100)
and a load cell (Loadstar Sensors Inc., RPG-10), was used to perform strain-
controlled force measurements. For both cylindrical and hemispherical
samples, 3D printed point indenters (radius ratio of indenter with respect to
shell ∼0.05) were used for indentation. All samples were deformed in strain-
controlled tests at a compressive strain rate of 5 mm/min. Data collection
and analysis was performed using an in-house algorithm in MATLAB (The
Mathworks), without any signal processing/ filtering (components derived
from ref. 52).
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Differential Geometry of Curves and Surfaces
A crease placed on a surface is parametrized by a space curve cðsÞ,
with s an arc length variable that runs along the curve. At each point
on the crease we define the orthonormal Frenet frame ft,NF ,Bg,
with the unit tangent t= ∂sc, normal ∂2s c= κNF, and binormal B=
t×NF vectors, respectively. These vectors are characterized by the
following relationship:

d
ds

0
@ t

NF

B

1
A=

0
@ 0 κ 0

−κ 0 τ
0 −τ 0

1
A
0
@ t

NF

B

1
A, [S1]

where κ is the curvature of the crease and τ is the torsion. The
surface of the shell is composed of two regions that are di-
vided by the crease, each parametrized by a local orthonormal
frame. In a frame of reference where one surface is fixed in
space a local orthonormal frame f̂t,   û+,   n̂+g defines the two
surfaces in the unfolded state. When the surface is folded,
another frame f̂t,   û−,   n̂−g is used to signify the change from
the undeformed state. These vectors are related in a similar
fashion to the Frenet frame:

d
ds

0
@ t

u±

n±

1
A=

0
@ 0 κg κN

−κg 0 τ±g
−κN −τ±g 0

1
A
0
@ t

u±

n±

1
A. [S2]

Here we have aligned the two frames so that the tangent to
the curve is one of the tangents to the surface, and we have de-
fined the geodesic curvature κg≡ t′· u±, the normal curvature
κ±N≡ t′ · n±, and the geodesic torsion τg≡ u′· n. The relationship
between the surface vectors and the crease vectors is given in
terms of the linear combination

u= cosψN f + sinψB, [S3]

n=−sinψNF + cosψB. [S4]

The angle ψ measures the difference between the surface tangent u
and the Frenet normal NF, as well as comparing the geodesic and
normal curvatures directly to the crease curvature via κg = κ cosψ
and κN = κ sinψ. Using this relationship also supplies expressions for
the surface quantities in terms of the crease quantities:

κg = κ cosψ , [S5]

κN = κ sinψ , [S6]

τg =ψ ′ðsÞ+ τ. [S7]

The angle ψ is particularly important if we wish to consider
folding the shells about this crease. The equation for ψ in terms
of normal (or geodesic) curvature has two solutions, that is,

ψ = ±cos−1ðκg=κÞ=±cos−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðκN=κÞ2

q
. This corresponds to the

folded and unfolded states shown in Fig. 1.
To determine the stability of the folded state we first write the

energy for deformation of a thin shell:

E = Yt
2ð1+ νÞ

Z
dS
�

ν

1− ν

�
Eγ
γ

�2
+EαβEαβ

+
t2

12

�
ν

1− ν

�
Kγ
γ

�2
+KαβKαβ

��
,

[S8]

where Eαβ is the strain tensor, Kαβ is the bending tensor, Y is
Young’s modulus, ν is Poisson’s ratio, and t is the thickness of
the shell. To describe the strain and bending tensors of the surface,
we need the first and second fundamental forms, given by
I = gαβdxαdxβ and II = hαβdxαdxβ, where gαβ and hαβ are the met-
ric and curvature tensors, respectively. Using these definitions,
Eαβ = gαβ* − gαβ and Kαβ = hαβ* − hαβ, where gαβ* , hαβ* refer to the fun-
damental forms in the deformed configuration. In general it costs
more energy to stretch than to bend, so we first examine the iso-
metric limit (gαβ = gαβ* ), so that the only contribution to the energy
comes from bending. While this limit is singular, it provides a
simple geometric interpretation of nearly free deformations and
yields insight into the stability and foldability of general shells.
We define a coordinate system on the shell fs, vg using the

crease as the point of origin, so that s is an arc length along the
crease and v is measured orthogonal to the crease, such that

I =Eds2 + 2Fdsdv+Gdv2, [S9]

II± =N±ds2 + 2M±dsdv+L±dv2, [S10]

where we need to define II+, II− separately for the pieces of
the surface that are divided by the crease. Because s is an arc-
length parametrization, the first fundamental form may be writ-
ten as I = dv2 + ρ2ds2, and we have that the components of the
metric are gvv = 1, gsv = gvs = 0, and gss = ρ2, where ρðs,   vÞ is an
unknown function that in general requires the full solution of
the Gauss–Codazzi equations. Close to the crease, v≈ 0, how-
ever, because s is an arc-length variable we know that ρð0,   sÞ= 1.
Finding the bending energy requires that we find the mean

curvature of the surface, which requires us to compute the
components of the curvature tensor, hαβ = ð∂α∂βrÞ· n, where r is
a parametrization of the surface. With the geometric defini-
tions given above, we have the fairly simple results that
N± = hss = κ±N and M± = hsv = τ±g . To find L±, we invoke Gauss’s
Theorema Egregium, which states that det II=det I =K, where K
is the Gaussian curvature of the surface. Written using our no-
menclature, this indicates that

K=
L±N± − ðM± Þ2

EG−F2 =
Lκ±N −

	
±ψ ′+ τ


2
ρ2

. [S11]

Close to the crease this yields L= ðK+ ð±ψ ′+ τÞ2Þ=κ±N if κN ≠ 0. If
κN = 0, then the value of L is not constrained by the Theorema
Egregium, and thus the shell is not constrained isometrically by
the crease.
The bending energy density EB ∼BðH + Þ2+BðH−Þ2, where H =

ð1=2ÞTrfI−1IIg, written in terms of the crease parameters for
κN ≠ 0:

H+ =
1
2
ðN+ +L+Þ= 1

2

 
κ+N +

K+
	
ψ ′+ τ


2
κ+N

!
, [S12]

and similarly for H−. Because the geodesic curvature κg is in-
variant under isometric deformations, we may write the mean
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curvature in terms of isometric constants, parameters that are
related only to the crease, and the folding angle ψ :

H+ =
1
2

 
κg tanψ +

K+
	
ψ ′ðsÞ+ τðsÞ
2
κg tanψ

!
. [S13]

The energy, proportional to H2, diverges as ψ passes through
zero, indicating that our isometric model cannot accurately de-
scribe the transition between folded shell states for creases that
have finite normal curvature. The existence of an infinite barrier
in this singular limit indicates that the angle ψ may not be folded
continuously from the folded state to the unfolded state.
If the crease has zero normal curvature, however, the com-

ponent of the second fundamental form hvv is unconstrained by
the crease. The mean curvature is given by H =L, with L de-
termined entirely by bending away from the crease that is un-
constrained by the condition of isometry. The folding angle and
torsion, however, are constrained by

ψ ′ðsÞ+ τðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−KðsÞ

p
. [S14]

Written another way, we have that τg =
ffiffiffiffiffiffiffi
−Kp

, i.e., that the
geodesic torsion is related to the Gaussian curvature of the
surface. The geodesic torsion physically corresponds to the rate
of rotation of the normal to the surface along the curve.
Together, these results can be used to infer a number of things.

First, finite normal curvature implies that there is an energy
barrier, which implies that a subcritical bifurcation may occur.
Second, zero normal curvature implies that locally, the shell may
deform without stretching, and thus the angle ψ may be varied
continuously without fear of approaching a stretching barrier.
Furthermore, zero normal curvature explicitly means that one of
the components of the curvature tensor vanishes identically;
specifically, the curvature of the surface in the direction of the
crease is always zero.

Example: The Helicoid
A parametrization for the helicoid isHðu, vÞ= fu cos v,u sin v, αvg,
which yields I = du2 + ðα2 + u2Þdv2 and II =−2L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + u2

p
dudv.

The helicoid is a minimal surface, so H = 0, and it has Gaussian
curvature K=−α2=ðα2 + u2Þ2.
For a general surface with nonpositive Gaussian curvature, at

every point there exists a pair of asymptotic curves such that the
normal curvature along these curves is zero. For a curve pa-
rametrized by an arc length t, βðtÞ= fξðtÞ, ηðtÞg, solutions to the
following differential equation yield asymptotic curves:

Nξ′ðtÞ2 + 2Mξ′ðtÞη′ðtÞ+Lη′ðtÞ2 = 0. [S15]

For a helicoid, if we let ξ= u, η= v then this equation is simply

−2αffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 + u2

p u′ðtÞ v′ðtÞ= 0, [S16]

which has as solutions curves of constant v (straight lines) or
curves of constant u (helices). Asymptotic curves of constant v
are particularly simple examples, because τ= 0 and κg = 0, so that
these curves are both asymptotic lines and geodesics of the he-
licoid. The ability to fold the helicoid about any of these con-
struction lines follows trivially from rigid-body rotations, and any
energetic cost is associated with the fold, not the bending of
the surface.

Alternatively, we could write this as τg =
ffiffiffiffiffiffiffi
−Kp

= 1=R, where
1=R is the magnitude of the principal radius of curvature of the
helicoid. This means that ψ ′= 1=R, and thus the folding of the
surface only changes along the curve by the same amount that
the surface naturally rotates.
Choosing curves of constant u= u0 yields helices, which have a

constant torsion τ= α=ðα2 + u20Þ, and Gaussian curvature that is
constant along the helix, K=−α2=ðα2 + u20Þ2, so that ψ ′ðsÞ= 0
along the curve. Any constant folding angle ψ will lead to locally
isometric deformations that do not necessarily result in an en-
ergy barrier to folding. These arguments are all local, and there
may be global constraints that lead to an energetic barrier, but
this depends specifically on the type of surface and shape of
the crease.
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Movie S1. Deformation of creased helicoids made from poly(caprolactone) with a rigid indenter under constrained boundary conditions at the “straight”
edge. A continuous hinge-like deformation is demonstrated by crease with zero normal curvature (KN = 0) along (i) generating line (straight), and (ii) or-
thogonal to it (helical), whereas a snap-through instability is observed for crease along (iii) a curve with finite normal curvature (KN ≠ 0). High-speed video of
snap @ 3,000 frames per second (fps) included.

Movie S1

Movie S2. Deformation of cylinders made from poly(ethylene terepthalate) with different crease parameters and boundary conditions to demonstrate
monostability and bistability. An isometric deformation of creased cylinder in absence of constrained boundary conditions can be seen. The antisymmetric
deformation mode in case of a bistable creased cylinder is seen at 00:17 s .High-speed video accompanied for the snap-through transition @ 3,200 fps is
included.

Movie S2
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Movie S3. Deformation of an uncreased (α= 0) and creased [α= 0.5 (exhibits monostability) and α= 0.6 (exhibits bistability)] hemispheres made from poly(vinyl
siloxane). High-speed video of snap @ 500, 4,000 fps included. For α= 0.6, the deformation goes through Pogorelov regime (timestamp: 00:37), the non-
axisymmetric snap (timestamp: 00:40), and final snap (timestamp: 00:43).

Movie S3
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