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Abstract

While colloidal suspensions of nonspherical particles have been studied for decades, most work has focused on describing their

behavior in flows with simple time behavior. Little is known about their behavior in flows with complex variations in time, and in

particular, the possibility of varying the flow to control the suspension’s properties. Here, we take advantage of a recent solution for the

orientation dynamics of a dilute suspension under an arbitrary periodic, high-frequency shear flow to control particle alignment and

suspension rheology. Working in the twin limit of rapid oscillations (Pe ¼ 1=DTcyc � 1, where D is the rotary diffusivity and Tcyc is the

oscillation period) and long times t (Dt� 1), we use a periodic simple shear waveform to strongly align particle orientations, aligning

the orientations more strongly than steady shear by a factor proportional to the particle aspect ratio. Since particle orientations couple

to the suspension stress, we can strongly control the rheology, maximizing and minimizing the viscosity and creating large normal

stress signals. Surprisingly, the optimal waveforms are extremely simple, providing an intuitive understanding of the mechanisms for

controlling particle alignment and suspension rheology. VC 2017 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4996009]

I. INTRODUCTION

The interplay between an applied flow and particle

orientation creates a diverse set of behaviors in suspen-

sions of elongated particles. The particles’ additional

orientational degree of freedom couples to the applied

flow. The flow rotates the particle orientations, and the

orientations in turn affect the suspension’s stress. As a

result, suspensions of anisotropic particles display a rich

set of non-Newtonian rheological behaviors, even in the

dilute limit in simple flows. However, the difficulty of

solving the underlying equations of motion has pre-

vented analysis of the dynamics of anisotropic particle

suspensions except in the most basic flow fields, such as

steady simple shear or extensional flows. Extending this

understanding to more complicated flows could allow for

new control over the suspension properties, such as

strongly aligning particle orientations or minimizing the

suspension’s viscosity.

Jeffery [1] was the first to investigate suspensions of

ellipsoidal particles under simple shear. He found that these

particles rotate in an unsteady motion known as a Jeffery

orbit. For a spheroidal particle of aspect ratio r in a simple

shear flow, the particle’s unit normal pðh;/Þ evolves with

time t as

tan / ¼ r tan
C tð Þ

r þ 1=r
þ j

� �

tan h ¼ C r cos2 /þ 1

r
sin2 /

� ��1=2
; (1)

where CðtÞ is the accumulated shear strain of the applied

flow, and the phase angle j and orbit constant C are con-

stants of integration. The particle’s orientation pðh;/Þ is

parameterized by the polar angle from the vorticity direction

h and the azimuthal angle from the gradient direction /. For

most particles [2], the rotation is periodic, and the Jeffery

orbit only advects the initial distribution of particle orienta-

tions. Additional effects other than the Jeffery orbit are

required to create a unique long-time distribution.

In colloidal suspensions, rotational diffusion randomizes

the particle orientations. In a shear flow, both the determinis-

tic Jeffery orbits and the random rotational diffusion deter-

mine the final orientation distribution q, as described by a

Fokker-Planck equation in orientation space

@q
@t
¼ Dr2q� $ � qxð Þ; (2)

where D is the rotational diffusivity. For dilute suspensions

in a time-varying simple shear flow, the rotational velocity x
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is the Jeffery orbit rotational velocity. Either Jeffery’s solu-

tion or symmetry considerations [3] give this rotational

velocity as

x ¼ p �Xþ r2 � 1

r2 þ 1
E � p� p p � E � pð Þ½ �

¼ /̂
_c tð Þ

r þ 1=r
r cos2 /þ 1

r
sin2 /

� �
sin h

þ ĥ
_c tð Þ r2 � 1ð Þ
4 r2 þ 1ð Þ sin 2/ sin 2h; (3)

where X ¼ ð$v� $vTÞ=2 and E ¼ ð$vþ $vTÞ=2 are the

instantaneous vorticity and rate-of-strain tensors, ^ and /̂ are

unit vectors along the h and / directions, and _cðtÞ is the instan-

taneous strain rate of the flow. The combined effects of diffu-

sion and Jeffery orbits produce an interesting array of

orientation distributions and suspension rheology that are fairly

well understood for steady shear at long times. The P�eclet

number Pe, the ratio of the flow’s shear rate to the particle’s

rotational diffusivity, determines the relative importance of dif-

fusion versus particle reorientation by the Jeffery orbit. At low

Pe, diffusion dominates and results in an isotropic orientation

distribution and a high suspension viscosity [4,5]. To first order

in Pe, the flow creates a slight alignment along the extensional

axis, but the suspension viscosity remains the same.

Conversely, at high Pe, diffusion causes a randomization of

the rod’s orientations only insofar as to result in a distribution

that does not change in time [6]. Particles tend to align fairly

strongly with the flow, where the Jeffery orbit is slowest,

which also results in a relatively low suspension viscosity.

There is a third regime at intermediate Pe such that

1� Pe� ðr3 þ r�3Þ, where the Jeffery orbit is dominant

over diffusion almost everywhere except in a small region near

the flow direction where diffusion dominates [7]. In this

regime, the particles align near the flow direction, but not as

strongly as they do in the high-Pe regime.

While extensive research has focused on describing

steady shear of axisymmetric particle suspensions, much less

work has focused on describing their behavior in time-

varying flows [8]. The time-dependent convection-diffusion

equations for rod orientation dynamics are extremely com-

plicated to solve even in the dilute limit; as yet there is not a

complete solution even for the startup of steady shear. As a

result, an engineer who desires to control a suspension of

axisymmetric particles through shear is essentially limited to

either exploring long-time steady shear at various Pe or to

experimenting through trial-and-error. In this paper, we take

the first steps toward creating a theory for controlling the

flow behavior of suspensions of axisymmetric particles. We

take advantage of a recent analytical solution to the orienta-

tion dynamics of axisymmetric particles under an arbitrary
periodic shear flow, albeit for particles confined to the flow-

gradient plane at high Pe [9]. We use this exact solution to

optimize desired properties of the suspensions such as maxi-

mizing particle alignment, maximizing and minimizing the

suspension shear viscosity, and maximizing the normal stress

difference. Our results are valid at short oscillation periods

(Pe � 1=DTcyc) and after initial transients have decayed

(Dt� 1). Surprisingly, the optimal waveforms for control-

ling suspension behavior are extremely simple and allow for

a precise intuition for the mechanism for controlling suspen-

sion properties. Along with previous similarities between the

restricted and full orientation dynamics [9,10], this intuition

suggests that the results and qualitative features of the opti-

mal waveforms will carry over to real suspensions of par-

ticles that can rotate freely in three dimensions.

II. ORIENTATIONS CONFINED TO THE
FLOW-GRADIENT PLANE

For particles confined to the flow-gradient plane, the com-

plicated advection-diffusion equation (2) in orientation space

simplifies to

@q
@t
¼ D

@2q

@/2
� @

@/
_C tð Þx /ð Þq
� �

;

x /ð Þ ¼ 1

r þ 1=r
r cos2 /þ 1

r
sin2 /

� �
;

(4)

where _CðtÞ is the instantaneous strain rate of the applied

flow and xð/Þ is the rotational velocity per unit strain rate.

At high Pe the distribution qð/; tÞ changes with time in an

exceptionally complicated manner [9]. The nonuniform

velocity of the Jeffery orbit compresses and expands qð/; tÞ
and rotates these inhomogeneities with the orbit. These dis-

tortions occur on two fast timescales—a flow timescale

�1= _C and an oscillation timescale associated with time var-

iations in _CðtÞ. Diffusion then relaxes the distribution on an

additional, diffusive timescale �1=D that is much slower

than the flow and oscillation timescales. The distribution

does not necessarily relax to a steady state, but may continue

to change with the flow’s oscillations. At high Pe; qð/; tÞ
changes rapidly with time because a particle’s phase angle j
and orbit constant C in Eq. (1) are roughly constant with

time, while its orientation / changes rapidly with time due

to the Jeffery orbit.

As a result, at high Pe the orientation dynamics are much

simpler when described in terms of the distribution of the par-

ticles’ phase angles f ðjÞ instead of the distribution of their

orientations qð/Þ [9,11]. These two distributions are related

by f ðjÞ dj ¼ qð/Þ d/; the coordinate relationship between j
and / defined by the Jeffery orbit in Eq. (1) gives [9]

q ¼ �x
x /ð Þ f jð Þ

¼ 1

r cos2 /þ 1=r sin2 /
	 f jð Þ

¼ 1=r cos2 jþ �xC tð Þð Þ þ r sin2 jþ �xC tð Þð Þ
� �

	 f jð Þ; (5)

where �x ¼ 1=ðr þ 1=rÞ is the average particle rotation per

unit strain. When D¼ 0, the distribution of phase angles f ðjÞ
remains constant with time, as the particles only reorient due

to their Jeffery orbits. In contrast, the orientation distribution

qð/Þ changes rapidly, as the Jeffery orbit stretches and

advects the distribution. Likewise, when the rotational diffu-

sion is nonzero but weak, the particle orientations are

described much more simply in terms of f ðjÞ than qð/Þ. By
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construction, f ðjÞ evolves only due to diffusion, changing

only on the long time scale �1=D. For an arbitrary periodic

strain waveform CðtÞ, the phase-angle distribution f ðjÞ
evolves as [9]

@f

@t
¼ � @

@j
�D jð Þ @f

@j
� 1

2

@D

@j
f

� �
(6)

in the limit that the characteristic diffusion time is large com-

pared to the period of the waveform Tcyc: Pe � 1=DTcyc

� 1. Here, DðjÞ is an effective phase-angle dependent rota-

tional diffusion, defined through the inverse-square of the

particle’s rotational velocity time-averaged over a cycle

D jð Þ=D ¼ 1

Tcyc

ðTcyc

0

�x
x jþ �xC tð Þð Þ

� �2

dt

¼ 1

Tcyc

ðTcyc

0

1

r
cos2 jþ C tð Þ

r þ 1=r

� ��

þ r sin2 jþ C tð Þ
r þ 1=r

� ��2

dt: (7)

In particular, at long times Dt� 1 f ðjÞ has a simple steady-

state solution that does not change with time

f ðjÞ / ðDðjÞ=DÞ�1=2 ; (8)

regardless of how complicated the applied shear flow is. In

contrast, even for Dt� 1 the orientation distribution qð/; tÞ
changes rapidly in t for flows with all but the simplest time

dependencies. Physically, the orientation distribution is

determined through diffusion by a memory of the average

applied shear flow through DðjÞ. The particles migrate to

regions of low phase-angle diffusivity, as is common in sys-

tems ranging from the creation of concentration gradients in

turbophoresis [12,13] to absorbing states in dense, non-

Brownian suspensions [14,15]. The memory of the applied

flow is only determined by time-averages of functions of the

shear strain, independent of the strain rate, the frequency of

the oscillation, and the orders in which the strains occurred.

The particle orientations forget their initial conditions on an

enhanced time scale / 1=D [9].

Figure 1 illustrates these two distinct ways of viewing the

evolution of particle orientations with time. Under steady

shear, a steady-state solution for q exists, as shown in Fig.

1(a) for a suspension of particles with r ¼ 5:0. The distribu-

tion is symmetric with respect to inverting the particle’s ori-

entation (p! �p or /! /þ p), keeping the symmetry of

the Jeffery orbit. As Pe!1, the steady-state solution cor-

responds to an orientation distribution qð/Þ that is inversely

proportional to xð/Þ. The orientation distribution qð/Þ is

suppressed by /1=r near the gradient direction (at / ¼ 0

and p), where the particles rotate rapidly, and is enhanced by

/r along the flow direction (at / ¼ p=2 and 3p=2), where

particles rotate slowly. In contrast, in j-space the distribution

f ðjÞ is constant, as diffusion effectively erases the memory

of the starting time of the shear [panel (b)]. Translating from

f ðjÞ to qð/Þ involves multiplying by the prefactor �x=xð/Þ
in Eq. (5). Since / ¼ /ðjþ �xCðtÞÞ [cf. Eq. (1)] and since

CðtÞ ¼ _ct for steady shear, this prefactor �x=x translates with

a fixed velocity in j space, as illustrated by the lower portion

of panel b.

Under oscillatory shear, the long-time distributions are

considerably simpler when described in terms of f ðjÞ than

when described in terms of qð/Þ. As the flow oscillates, the

orientation distribution qð/; tÞ does not approach a steady-

state value but is stretched and rotated with the flow in a com-

plicated manner throughout each cycle, as indicated in Fig.

1(c). For the sinusoidal shear with strain amplitude 1 shown

in the figure, at the center of the cycle the distribution is

almost isotropic, but is slightly distorted. As the suspension is

sheared, the distribution is first stretched along the exten-

sional axis by the term /E � p� pðp � E � pÞ in Eq. (3), then

rotated by the flow to be more closely aligned along the flow

axis (CðtÞ ¼ 1 curve). Reversing the flow first returns the dis-

tribution to its value at the center of the cycle before repeat-

ing the stretching and rotation in the opposite direction.

In contrast, at high Pe this picture is much simpler in terms

of the phase-angle distribution f ðjÞ. The phase-angle distri-

bution .. attains a steady-state form that is constant in time

[upper portion of panel (d)] and is determined solely by DðjÞ
through Eqs. (7) and (8). For the moderate strain amplitude

shown in panel d, �xC is small, and DðjÞ 
 ð�x=xðjÞÞ2.

Thus, DðjÞ is small in regions where the Jeffery orbit veloc-

ity is small, and vice versa. Since f ðjÞ / 1=
ffiffiffiffiffiffiffiffiffiffiffi
DðjÞ

p
, in Fig.

1(d) f ðjÞ is enhanced at phase angles corresponding to par-

ticles that rotate rapidly with the Jeffery orbit (near

j ¼ 0; p), and is suppressed at phase angles corresponding to

particles that rotate slowly with the Jeffery orbit (near

j ¼ p=2; 3p=2). This f ðjÞ, in conjunction with the initial

centering of the trough in �x=x about the peak in f ðjÞ, corre-

sponds to the initially mostly isotropic distribution qð/Þ. The

stretching and rotation of qð/Þ with time simply corresponds

to the oscillation of the prefactor �x=x about the peak in f ðjÞ.
As the trough in �x=x shifts slightly to either side of the peak

in f ðjÞ, the overlap between f ðjÞ and �x=x increases and

qð/Þ becomes more strongly peaked.

Motivated by the simple description for orientation dynam-

ics at high Pe, we proceed to optimize the orientation distribu-

tion for a desired property. Equations (5), (7), and (8)

completely determine the steady-state orientation distributions

at long-times for an arbitrary shear waveform. Moreover,

while in practice DðjÞ may be difficult to calculate analyti-

cally, it is extremely simple to calculate numerically—as we

will show, two quadratures determine DðjÞ, which in turn

determines the form of f ðjÞ aside from a normalization con-

stant. As a result, we can simply parameterize an arbitrary

waveform and fit these parameters to optimize any desired

property determined by the orientation distribution.

III. MAXIMIZING ALIGNMENT

Strongly aligned particle orientations are crucial for engi-

neering applications of nonspherical particle suspensions.

For instance, a well-defined orientation strongly affects

the mechanical stiffness [16] and thermal or electrical

conductivity [17–19] of a fiber-reinforced composite, and

981CONTROLLING THE ALIGNMENT OF RODLIKE COLLOIDS



orientation alignment determines the optical activity of a sus-

pension [20]. For many processes, such as extruding fiber-

reinforced composites, the alignment is desired at a specific

moment in time, e.g., when the composite is cured or when

the dichroism is measured, rather than over the entirety of

the cycle. Motivated by this, we look for a waveform that

maximizes the particle alignment at one point in time. For

processing applications, this alignment could be locked in

by rapidly curing the suspension into a solid matrix.

Alternatively, a strong alignment at one point in the cycle

could be used to calibrate orientation measurements such as

flow dichroism with a strong signal.

As a simple measure of alignment, we look for the wave-

form that maximizes the largest value of qð/Þ at one instant

in time. The high symmetry of the Jeffery orbit ensures that

maximizing qð/Þ produces a highly aligned distribution and

prevents pathological distributions, such as a qð/Þ with

many large peaks along different directions. Moreover,

empirically the optimal waveforms that maximize qð/Þ are

identical to the waveforms that maximize many of the more

realistic order parameters, including the standard rank-two

liquid crystal order parameters Q and S2 for dichroism and

conductivity, where Q is the traceless, symmetric, second-

order orientation tensor (Q ¼ 2hppi � d in two dimensions)

and S2 is its maximal eigenvalue.

We maximize the largest value of q by first parameteriz-

ing the waveforms by 60 Fourier coefficients and optimiz-

ing over those coefficients. Without loss of generality, we

optimize the value of q at the start of an oscillatory cycle.

Likewise, there is a gauge freedom in selecting an overall

offset for CðtÞ, corresponding to any transient shear done

on the suspension infinitely far in the past; we choose

Cð0Þ ¼ 0 throughout the paper. Surprisingly, the optimal

waveforms for maximal alignment and for the other prop-

erties considered later in this paper have extremely simple

forms. As a result, both for maximizing q and for the rheol-

ogy waveforms considered later, we first optimize using

the 60 Fourier coefficients to find the simple optimal wave-

form, then reoptimize using the simpler waveform. The

simple optimal waveform always produces more extremal

values of the desired property than the naive Fourier

parameterization.

FIG. 1. (a) qð/Þ for particles with aspect ratio r ¼ 5:0 under steady shear is sharply peaked and constant in time. (b) The corresponding phase-angle distribu-

tion f ðjÞ (upper panel) is constant in j and time. The sharp-peaks of qð/Þ correspond to the sharp peaks in the prefactor �x=x that multiply f ðjÞ. The prefactor

translates as the strain increases, leaving qð/Þ unchanged in time as f ðjÞ ¼ 1=2p is constant in j. (c) qð/Þ under oscillatory shear CðtÞ ¼ 1:0 sinðtÞ changes in

a complicated manner with time, stretching and rotating with the flow. In contrast, the phase-angle picture in (d) is much simpler. f ðjÞ does not change with

time (top), and has a peak near j¼ 0 and j ¼ p. The time-varying qð/Þ corresponds to the motion of the prefactor �x=x in time (bottom, motion indicated by

arrows), as its peaks and troughs align with various features in f ðjÞ.
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Figure 2(a) shows the waveform that maximizes the align-

ment in a dilute suspension of rods with aspect ratio r ¼ 5:0,

after the initial transients have decayed. The waveform

involves not shearing for almost all of the cycle, then strain-

ing by C ¼ pðr þ 1=rÞ=2 
 8:17, precisely one-quarter of a

Jeffery orbit. For the optimal waveform, the duration of this

spike goes to zero; panel (a) shows the spike at finite width

for ease of viewing. Even for the moderate aspect ratio

r ¼ 5:0, this waveform produces an exceptionally strong

alignment, as shown in panel (b). The peak of the orientation

distribution q for the optimal waveform (green curve) is 5	
greater than that for steady shear (black dotted curve), even

though the suspension is not being sheared for most of the

optimal cycle!

Why is this alignment so strong compared to steady

shear? While the answer is not immediately obvious when

examining the behavior of Eq. (4) in terms of qð/Þ, it is

readily apparent in terms of f ðjÞ. There are two terms that

determine the orientation distribution qð/Þ in Eq. (5): A pre-

factor �x=x that does not depend on the waveform but

changes during a cycle, and the phase-angle distribution f ðjÞ
that depends on the waveform but does not change during a

cycle. The prefactor �x=x varies strongly with j, having a

strong /r peak at jþ �xCðtÞ ¼ p=2. Under steady shear, the

particle phase angle is completely randomized—

f ðjÞ ¼ 1=2p—and the alignment of q arises solely from the

peaks in �x=x. Thus, from the standpoint of Eq. (5), steady

shear is a terrible way to align the distribution! Almost any

other waveform will produce variations in f ðjÞ, and shifting

the peak in �x=x over a peak in f ðjÞ will produce a more

aligned distribution. To maximize the alignment, we should

look for a waveform that creates the maximal peak in f ðjÞ,
and then attempt to add a negligible motion on top of that

waveform to align the peak in f ðjÞ with that in �x=x.

One waveform with a strongly peaked f ðjÞ is low-

amplitude sinusoidal shear. As the amplitude of the sinusoi-

dal shear approaches zero, the orientation distribution qð/Þ
becomes isotropic. The isotropic qð/Þ implies that f ðjÞ
is strongly peaked, with a magnitude �r as r !1, since

qð/Þ ¼ �x=x	 f ðjÞ and since �x=x varies strongly with j,

FIG. 2. (a) The spike waveform that maximizes alignment for r ¼ 5:0. The optimal waveform has a spike of zero width; panel a shows one of width p=5 for

clarity. (b) The maximally aligned qð/Þ (light green) is much more strongly peaked than the steady-shear qð/Þ (dotted black), even at moderate r ¼ 5:0.

When the alignment is not required, the waveform returns the distribution to isotropy (dark green). (c) f ðjÞ (top) for the spike waveform. The prefactor �x=x
starts antialigned with f ðjÞ (black curve), and translates to align its peak with that of f ðjÞ (gray curve), as indicated by the arrow. (d) The maximal value of

qð/Þ (red) and the optimal strain (cyan), as a function of r (multimedia view in the supplementary material).
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cf. Eq. (5). From the naive viewpoint of qð/Þ, zero-

amplitude sinusoidal shear is a terrible way to align particles,

as qð/Þ ¼ 1=2p is completely isotropic. But from the view-

point of the phase-angle distribution, this waveform is a

great way to align the distribution, since f ðjÞ is sharply

peaked. The only slight problem is that, at zero strain, the

prefactor �x=x exactly cancels any peaks in f ðjÞ. However,

this problem is easily rectified by straining by an amount

exactly 1/4 of a Jeffery orbit C ¼ pðr þ 1=rÞ=2, aligning the

peak of �x=x with that of f ðjÞ. Moreover, since DðjÞ and

f ðjÞ are determined by time-averages of the waveform [cf.

Eq. (7)], a rapid shift in strain will not affect the phase-angle

distribution f ðjÞ.
This approach is precisely what the optimal waveform in

Fig. 2 takes. Not shearing for most of the cycle creates the

sharply peaked f ðjÞ shown in panel (c), which is the same as

under zero-amplitude shear except for a shift resulting from

our choice of Cð0Þ. This creates an orientation distribution

which is completely isotropic throughout most of the cycle.

Then, exactly at the start of the cycle, the waveform shifts

the peak of �x=x to align with the peak of f ðjÞ, giving a

strongly aligned orientation distribution

q /ð Þ ¼ 1

2p
1

r2 cos2 /þ r�2 sin2 /
: (9)

The peak of height r=2p in f ðjÞ and the peak of height r in

�x=x cooperate to produce the r2=2p peak in qð/Þ. Aligning

the peaks in f ðjÞ and �x=x requires a strain of 1/4 of a

Jeffery orbit, or pðr þ 1=rÞ=2. As shown in Fig. 2(d), both

the optimal strain and the maximal alignment follow the pre-

dicted strain scalings.

This mechanism has a simple explanation in terms of

qð/Þ and the velocity field of the Jeffery orbit. As the sus-

pension is not sheared for most of the cycle, diffusion relaxes

the orientation distribution to isotropy, except for during the

waveform’s spike, cf. Fig. 2 (multimedia view in the supple-

mentary material) [21]. This isotropic distribution corre-

sponds to orienting a sizeable fraction of the particles near

the gradient direction, where the Jeffery orbit rotates rapidly.

The spike then rotates these particles by one-fourth of a

Jeffery orbit, aligning them near the flow direction. The

Jeffery orbit rotational velocity is suppressed by �1=r2 com-

pared to the velocity near the gradient direction, resulting in

the �r2 bunching of particles visible in Fig. 2. This strong

alignment also occurs at startup of steady shear, when the

accumulated strain is exactly one-fourth of a Jeffery orbit.

However, as the steady shear continues the orientation distri-

bution relaxes to its less-aligned long-time value. By return-

ing the orientation distribution back to isotropy, the spike

waveform is able to repeat this strong alignment indefinitely

many times.

While the above argument shows that a �r2 particle

alignment is possible, it does not prove that the spike wave-

form in Fig. 2(a) is the optimal one nor divulge how robust it

is to deviations from perfection. We can further understand

the optimal waveform by delving deeper into the functional

form of DðjÞ. Expanding out the sines and cosines in Eq. (7)

gives a simplified form for DðjÞ

D jð Þ=D ¼ 3

8
r � 1=rð Þ2 þ 1� 1

2
r2 � 1=r2
	 


A2 cos 2jþ d2ð Þ

þ 1

8
r � 1=rð Þ2A4 cos 4jþ d4ð Þ; where

Aneidn ¼ 1

Tcyc

ðTcyc

0

einC tð Þ= rþ1=rð Þ dt: (10)

Only four real coefficients (A2; d2; A4; d4) describe the

entirety of the infinite-dimensional space of possible wave-

forms, through cosð2jÞ and cosð4jÞ oscillations in DðjÞ. In

general, either A2eid2 or A4eid4 can take any values in the

complex unit disk, although they cannot be varied completely

independently of each other. For some simple oscillatory

waveforms, these coefficients can be calculated exactly—for

example, for sinusoidal shear CðtÞ ¼ C0 sinð2pftÞ the coeffi-

cients are A2 ¼ J0ð2C0=ðrþ 1=rÞÞ; d2 ¼ 0 and A4 ¼ J0ð4C0=
ðr þ 1=rÞÞ; d4 ¼ 0, where J0 is the zeroth-order Bessel func-

tion—but for a generic waveform these coefficients are not

expressible analytically. Nevertheless, Eq. (10) still divulges

much information about a generic waveform. Since An, dn are

determined by time-averages, waveforms that only deviate

from one another for a short time will have similar phase-

angle distributions. Since f ðjÞ / 1=
ffiffiffiffiffiffiffiffiffiffiffi
DðjÞ

p
, waveforms for

which A2 and A4 are small will create phase-angle distribu-

tions with relatively little variation in j. As A2 and A4

increase, the variations in DðjÞ and f ðjÞ increase as well.

Tuning A2 and A4 toward their maximal values of 1 creates

small minima in DðjÞ, corresponding to a highly aligned

f ðjÞ.
The coefficients A2 and A4 describe the effect of a finite-

width spike on the alignment. Since q ¼ �x=x	 f ðjÞ, and

since f ðjÞ / 1=
ffiffiffiffiffiffiffiffiffiffiffi
DðjÞ

p
, a highly aligned distribution can

occur when DðjÞ has a small minimum. For a perfect wave-

form with an infinitesimal spike width, A2 ¼ A4 ¼ 1. The min-

imum of DðjÞ occurs when cosð2jþ d2Þ ¼ cosð4jþ d4Þ
¼ 1, which occurs at j ¼ p=2 for the choice of Cð0Þ ¼ 0

shown in Fig. 2. This value of j cancels both the Oðr2Þ and

the O(1) terms in DðjÞ, creating a minimum value of DðjÞ
� 1=r2 when r is large. Since f ðjÞ / 1=

ffiffiffiffiffiffiffiffiffiffiffi
DðjÞ

p
, this

minimum corresponds to a /r peak in f ðjÞ, which creates the

/r2 alignment in q as the spike aligns the peak in �x=x with

that in f ðjÞ.
When the spike has a small but finite width w, both A2

and A4 decrease by an amount proportional to w. As visible

from Eq. (10), this finite width will change DðjÞ by an

amount / wp2 when r is large. To change the peak in f ðjÞ
by a small fractional amount, the / 1=r2 minimum in DðjÞ
must also change by a small fractional amount. Thus, the

wp2 change in DðjÞ must be comparable to the 1=r2 mini-

mum in the ideal DðjÞ, or w � 1=r4 for the width of the

spike to have little effect.

The alignment is extraordinarily sensitive to the spike

width due to diffusion. The optimal waveform creates a �r2

alignment, and therefore q changes rapidly on an orientation

scale ‘ � 1=r2. Since the diffusivity enters through Dr2q,

the large gradients effectively enhance the diffusion by an

amount �1=‘2 � r4. The spike duration w ceases to be short

enough for diffusion to appreciably affect the distribution
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when wp4 
 1, requiring an extremely brief spike duration

before diffusion begins to smooth out the distribution.

Figure 3 shows the effect of a finite spike duration on the

distributions. Panel (a) shows f ðjÞ for a particle of aspect

ratio r ¼ 5:0, for spike strains C ¼ pðr þ 1=rÞ=2 and spike

widths varying from 0 (cyan) to 2p (i.e., triangle-wave shear,

in black). Since a spike width of �1=r4 produces a signifi-

cant decrease in the peak of f ðjÞ, even at moderate r ¼ 5:0 a

spike that occupies 1% of the duration of the cycle signifi-

cantly decreases the peak value of f ðjÞ. This peak value

decreases rapidly with increasing spike width [panels (a) and

(b)], which correspondingly decreases the maximal value of

qð/Þ [panel (c)]. Even with these finite widths, however, the

spike waveform always aligns qð/Þ more than steady shear

does. Panel (d) shows the scaling of the alignment with

aspect ratio. While a spike of infinitesimal width creates a

�r2 orientational alignment, any fixed-width spike reduces

the scaling to �r, as shown by the curves for a spike width

of p=5 [the waveform in Fig. 2(a)] and of width p=500,

although either width always results in significantly more

enhancement than steady shear. In contrast, decreasing the

spike width with aspect ratio as w ¼ 1=r4 aligns the distribu-

tion to 
91% of its ideal value.

How achievable are these strong alignments in practice?

There are two necessary requirements for a strong alignment

to be achieved: The rotary P�eclet number Pe ¼ 1=DTcyc must

be large, and the spike duration must be small (w < 1=r4).

One fundamental source of a finite-spike duration is the time

for the shear flow to develop due to fluid inertia. For simple

shear created by two plates separated by a distance h, this

flow development time is t 
 h2=�, where � is the kinematic

viscosity of the liquid. The constraint that the development

time be small compared to 1=r4 implies that the cycle period

must be at least Tcyc > r4h2=�. Increasing the viscosity of the

suspending fluid will decrease the flow development time pro-

portionately, making the rapid spike easier to achieve. In addi-

tion to having a rapid spike duration, the P�eclet number must

also be large. Requiring Pe > 100 bounds the cycle duration

from above as Tcyc < 1=100D. For a fixed cycle duration and

particle size, increasing the suspending fluid’s viscosity will

proportionately decrease the rotational diffusivity, making

both the high-P�eclet requirement and the rapid spike duration

FIG. 3. Effect of finite spike width on distribution alignment. (a) f ðjÞ for a spike waveform, with spike widths of 0% (cyan), 1%, 10%, 50%, and 100% (black)

of the triangle-wave limit of 2p, at fixed amplitude C ¼ pðr þ 1=rÞ=2 and for a suspension with r ¼ 5. (b) The peak height of f ðjÞ as a function of the spike

width; in general the peak height decreases as the spike width increases, but it always remains considerably greater than the constant f ðjÞ for steady shear

(dashed line). (c) The maximum of qð/Þ for a spike waveform as a function of the spike width, with the spike centered at t¼ 0. (d) The scaling of the maximal

qð/Þ as a function of aspect ratio for steady shear (dotted black line), a spike of fixed width p=5 like that in Fig. 2 (red), a spike of fixed width p=500 (blue), a

spike of width 1=r4, and for an ideal spike of infinitesimal width (dashed black line).
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easier to achieve. These requirements constrain the cycle

duration as

r

5

� �4 h

1 cm

� �2
0:0008 m2=s

�
	 79 s < Tcyc < 1400 s

	 g
1 Pa � s

� �
a

5 lm

� �3

; (11)

the numbers are for a r ¼ 5:0 particle in pure glycerol with

long axis of a ¼ 5 l m, between two plates 1 cm apart, and

the rotational diffusivity is calculated using the asymptotic

mobility relationships from [22] for a r ¼ 5 spheroid; the

mobility increases logarithmically slowly as r increases

from 5. Thus, for a moderately sized particle in a viscous sol-

vent, an ideal spike waveform should be easy to achieve. If a

solvent with the viscosity of water is used with the same par-

ticle, the plate separation needs to be decreased to 40 lm for

this inequality to be achievable, with a cycle duration of

about 1 s. However, as Fig. 3(d) shows, while increasing the

spike duration decreases the alignment, the spike waveform

always produces a stronger alignment than continuous shear.

Thus, as long as the flow development time is short com-

pared to a cycle the spike waveform will strongly align the

particles, although not as well as the ideal spike.

IV. MAXIMIZING AND MINIMIZING VISCOSITY

Colloidal rods are a classic model system for exploring

non-Newtonian rheological behaviors, with the first investi-

gations dating back almost 100 years [1,23]. Even dilute

suspensions in simple shear flows can exhibit interesting

non-Newtonian behavior such as shear-thinning, stress over-

shoots, and normal stresses [24–27], arising from a combina-

tion of viscoelastic, flow-memory, and relaxation effects [8,

28–31]. This non-Newtonian behavior arises because the

particle orientations both couple to the flow and affect the

suspension stress. As rodlike particle suspensions produce a

wide array of rheological behaviors even for simple flows,

we expect that we can strongly control their rheology under

arbitrary-waveform oscillatory shear flows.

The stress at one instant in time in a suspension of rodlike

particles is determined by the current strain rate and

moments of the particle orientations

r ¼ 2gEþ 2gc 2AH E : hppppi � I E : hppið Þ
�

þ 2BH E � hppi þ hppi � E� 2

3
I E : hppi

� �

þCHEþ FHD hppi � 1

3
I

� ��
; (12)

where E is the instantaneous rate-of-strain tensor of the fluid,

I is the identity, g is the suspending fluid viscosity, c is the

volume fraction of rods, and AH; BH; CH; and FH are shape-

dependent hydrodynamic coefficients [4,7,8,22,32]. At high

Pe, the potentially elastic Brownian stress in the last term is

negligible compared to the other terms, and the suspension

stores no elastic energy.

For particles confined to the flow-gradient plane at high

Pe, these equations simplify considerably. The increase in

the effective shear viscosity due to the particles, per unit con-

centration and normalized by the fluid viscosity, is

ðr=2g� EÞxy=c ¼ AHh1� cos 4/i=8þ BH þ CH: (13)

As a result, for particles orientations confined to the flow-

gradient plane, controlling the shear stress in a suspension

only involves controlling the hcos 4/i moment of the distri-

bution. As Eqs. (12) and (13) show, at high Pe the suspension

response is always proportional to the instantaneous strain

rate and never has an elastic component. However, since the

particle orientations change with time, the proportionality

constant in Eq. (13) between the stress and the strain rate

changes with time, producing a purely viscous but non-

Newtonian response. We call this proportionality constant

the instantaneous viscosity gðtÞ, as it can change during an

oscillatory shear cycle. After the initial transients have

decayed, this non-Newtonian gðtÞ arises from the suspen-

sion’s memory of the average waveform through DðjÞ [9].

The instantaneous viscosity provides information about

the particle properties through the hydrodynamic coefficients

AH; BH; CH, which depend on the particle shape. In a typical

rheological measurement at high Pe all three coefficients are

measured simultaneously. For idealized particle orientations

confined to the flow-gradient plane, it is impossible to sepa-

rately measure the coefficients BH and CH from the shear

stress. However, the coefficient AH can be measured from

two separate waveforms that produce separate particle distri-

butions, cf. Eq. (13). Ideally, these two waveforms should

produce an gðtÞ that is maximally different from one another.

Motivated by this, we look for the waveforms that maximize

and that minimize gðtÞ, after the decay of initial transients.

For simple waveforms such as steady shear or sinusoidal

shear, the suspension viscosity gðtÞ is simply related to the

suspension stress. For more complex waveforms, these two

can differ dramatically, as the shear rate can be small or even

zero when the viscosity is large. As a result, a waveform that

extremizes the viscosity will not in general extremize the

measured stress. However, an additional high-frequency,

small-amplitude “probe” flow will measure the viscosity that

is created by the “pump” waveform. The probe flow will not

change the distributions, since f ðjÞ and DðjÞ only depend on

the average strain and not on the strain rate [cf. Eq. (7)].

Since the time-average value that the probe will measure is

the time-average of the viscosity, we maximize and minimize

the long-time (Dt� 1) average of gðtÞ, denoted by hgðtÞit. In

addition, the extremal hgðtÞit waveforms are simple to ana-

lyze, as the viscosity depends only on the strain waveform

and not directly on the strain rate.

As for the case with maximizing the distributions, extrem-

izing the viscosity is simpler in terms of f ðjÞ. Since

f ðjÞ dj ¼ qð/Þ d/ by construction, the average in Eq. (13)

can also be taken in phase-angle space instead of orientation

space: hcosð4/Þi¼
Ð

cosð4/Þqð/Þd/¼
Ð

cosð4/ðjþ �xCÞÞ
f ðjÞdj. From this standpoint, the waveform CðtÞ determines
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f ðjÞ, which does not change in time. Instead, during a cycle,

the strain shifts the position of cosð4/Þ in j space, and the

nonlinear transformation between / and j warps its shape.

Maximizing or minimizing the viscosity then corresponds to

selecting a waveform that maximizes or minimizes the over-

lap between cosð4/Þ and the f ðjÞ that the waveform creates.

Figure 4(a) displays the waveform that maximizes hgðtÞit
for a suspension of particles with aspect ratio r ¼ 5:0
(dashed brown line). Similar to the waveform that maximizes

qð/Þ, during most of the cycle the suspension is not sheared.

In contrast to the waveform in Fig. 2, however, the wave-

form that maximizes the time-averaged viscosity spends an

equal amount of time at two separate strains: At a strain

C¼ 0 and at C 
 1:26. Since the difference between these

strains is relatively small, this waveform creates a well-

peaked f ðjÞ [a dashed curve, upper portion of panel (b)]

with the peak slightly offset from j¼ 0. At C¼ 0, the peak

in f ðjÞ aligns with the peak at / ¼ �p=4 in the stress term

ð1� cos 4/Þ=8 from Eq. (13). Increasing the strain to

C ¼ 1:26 aligns the second peak at / ¼ þp=4 with the peak

of f ðjÞ. Aligning the peak in f ðjÞ with a peak in the stress

term creates a large viscosity, while alternating the align-

ment between the two peaks keeps the suspension sheared

and prevents it from relaxing to isotropy. As a result, the vis-

cosity is large and constant during the cycle, except for two

small dips as the strain changes from C¼ 0 to C ¼ 1:26, cf.

panel (c).

This explanation in phase-angle space has a simple analog

in orientation space. The viscosity is largest when the orien-

tations are aligned along the flow’s principle strain axes at

/ ¼ 6p=4, cf. Eq. (13). The waveform first aligns the par-

ticles with the axis at / ¼ �p=4 before rotating to the other

axis at / ¼ p=4 by rapidly sweeping the orientations through

the gradient axis at / ¼ 0, as shown in Fig. 4(d). Aligning

the particle orientations along these principle axes keeps the

viscosity large throughout the cycle. Since the Jeffery orbit

rotates particles rapidly in the angles between / ¼ �p=4

and / ¼ p=4, alternating the alignment between the two

axes only requires the small, O(1) strain shown in Fig. 4.

The boxcar waveform’s oscillation between two strain values

FIG. 4. (a) The waveform that maximizes hgðtÞit, for a suspension with r ¼ 5:0. The optimal waveform has a ramp-width of zero, as shown in the figure. (b)

Top panel: The corresponding phase-angle distribution. Bottom panel: The stress term at the start of the cycle (black) and at the middle of the cycle (gray). (c)

The viscosity as a function of time in the cycle. (d) The orientation distribution qð/Þ, for �p=2 < t < p=2 (light green) and for p=2 < t < 3p=2 (dark green),

with the continuous shear distribution (a dotted line) for comparison. Since the waveform is symmetric under time reversal, the two distributions are symmetric

under a reflection about the gradient axis. The large viscosity results from orienting the particles along the principle strain axes at / ¼ ð2nþ 1Þp=4 (multime-

dia view in the supplementary material).
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prevents the distribution from ever relaxing to isotropy [Fig.

4(d) (multimedia view in the supplementary material)].

Once the Fourier search indicates that a boxcar waveform

is optimal, a simple derivation leads to an analytical expres-

sion for the distributions f ðjÞ and qð/Þ. For a boxcar that

alternates between a strain of 0 and C0, Eq. (7) shows

D jð Þ ¼ 1

2

�x
x jð Þ

� �2

þ 1

2

�x
x jþ �xC0ð Þ

� �2
( )

:

Substituting in Eqs. (5) and (8) gives qð/Þ during the zero-

strain portion of the waveform as

q /ð Þ ¼ f j /ð Þð Þ
x=�x

/ 1þ x j /ð Þð Þ2

x j /ð Þ þ �xC0ð Þ2

" #�1=2

;

with a similar expression for q at strain C0. When the sus-

pension is not being sheared, diffusion begins to relax qð/Þ
back to isotropy. In j-space, diffusional relaxation corre-

sponds to either increasing or decreasing f ðjÞ, depending on

whether the corresponding value of j maps to a region where

qð/Þ is depleted or enhanced. The stationary f ðjÞ is the dis-

tribution such that any decreases in f ðjÞ at CðtÞ ¼ 0 are

exactly canceled by increases in f ðjÞ when CðtÞ ¼ C0. In

general, this stationary f ðjÞ produces an orientation distribu-

tion qð/Þ that is different in the two regions of the waveform

and that is not isotropic, even though the strain rate is almost

always zero.

The waveform that minimizes the time-averaged shear

viscosity is similar to the one that maximizes it, as shown

by the solid red line in Fig. 5(a). The waveform is also a box-

car, alternating between a strain of C¼ 0 and C 
 8:17.

However, while the waveform is similar to the one that max-

imizes hgðtÞit, the two phase-angle distributions f ðjÞ differ

significantly. As the strain C ¼ 8:17 is relatively large, f ðjÞ
no longer has a sharp peak, but is almost constant with small,

cosð4jÞ oscillations, shown by the solid line in panel (b).

These oscillations create a minimum in f ðjÞ at j ¼ p, near

the double-peak of the stress term. The waveform then shifts

this double-peak from the trough in f ðjÞ at j ¼ p to the

trough at j ¼ p=2. Eliminating any peaks in f ðjÞ prevents a

FIG. 5. (a) The waveform that minimizes hgðtÞit, for a suspension with r ¼ 5:0. The optimal waveform has a ramp-width of zero, as shown in the figure. (b)

Top panel: The corresponding phase-angle distribution. Bottom panel: The corresponding stress term at the start of the cycle (black) and at the middle of the

cycle (gray). (c) The viscosity as a function of time in the cycle. (d) The orientation distribution qð/Þ (light green), with the continuous shear distribution (a

dotted line) for comparison. The minimal viscosity waveform produces a distribution that is identical in both regions of the boxcar waveform. The small vis-

cosity results from orienting the particles away from the principle strain axes at / ¼ ð2nþ 1Þp=4 (multimedia view in the supplementary material).
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large overlap with the stress term and keeps the viscosity

low, while aligning the small minima due to the cosð4jÞ
oscillations further depresses the viscosity. Alternating the

alignment with the different cosð4jÞ minima keeps the distri-

bution from relaxing to isotropy. As a result, the viscosity is

small and constant during a cycle, except for two small

bumps as CðtÞ changes from 0 to 8.17, cf. panel (c).

The low-viscosity waveform also has a simple description

in orientation space. The viscosity is minimal when the orien-

tations are aligned either along the flow direction, at

/ ¼ 6p=2, or along the gradient direction, at / ¼ 0; p, cf.

Eq. (13). Steady shear naturally aligns particles along the

flow direction and creates the low steady-shear viscosity [7].

The large-amplitude boxcar waveform closely mimics steady

shear and strongly decreases the viscosity by aligning par-

ticles along the flow direction, as shown in Fig. 5(d) (multi-

media view in the supplementary material). The small,

cosð4jÞ modulations suppress the wider tails of the orienta-

tion distribution, reducing the overlap of the distribution with

the principle strain axes and further decreasing the viscosity.

From this picture, we can understand the scaling with

aspect ratio of the waveform that maximizes hgðtÞit and its

average viscosity. The waveform aligns the peak in f ðjÞ
with the two closely separated maxima in the stress term

ð1� cos 4/Þ=8, alternating between the two maxima at

/ ¼ 6p=4. The nonlinear transformation of / to j [Eq. (1)]

compresses the distance between these two maxima to a sep-

aration of �2=r in j space, as r !1. Since a strain C shifts

the stress term in j space by an amount �xC, and since �x also

scales as �1=r, the strain that maximizes hgðtÞit is asymptoti-

cally constant. This approach to a constant C 
 1:30 at large

r is visible in Fig. 6(d). Since the maximal-hgðtÞit waveform

aligns the peak in f ðjÞ with the peaks in the stress term,

the expectation h1� cosð4/Þi is always O(1), and hgðtÞit
�BH � CH � AH as the aspect ratio grows. The scaling of the

maximal viscosity in panel (d) reflects this, following the

�r2=lnr scaling of the hydrodynamic coefficient AH [4].

Next, we examine the scaling with aspect ratio of the

waveform that minimizes hgðtÞit and of its average viscosity.

The minimal waveform alternates between positioning the

double-peaks in the stress term on the minima in f ðjÞ, at

j¼ 0 and j ¼ p=2. Effecting this p=2 shift in j requires a

strain C ¼ p=2�x ¼ pðr þ 1=rÞ=2, as shown by the minimal-

hgðtÞit strain in panel (d). Moreover, this shift of C
¼ pðr þ 1=rÞ=2 sets the coefficient A2 ¼ 0 in Eq. (10), leav-

ing f ðjÞ with the cosð4jÞ modulation visible in the figure.

The minimal-hgðtÞit waveform eliminates any large peaks

from f ðjÞ. Since 1� cosð4/Þ only differs significantly from

zero in a region of width �1=r, the expectation h1�
cosð4/Þi is Oð1=rÞ, and hgðtÞit � BH � CH � OðAH=rÞ as

the aspect ratio grows. The scaling of the minimal viscosity

in panel (d) reflects the �r=ln r scaling expected.

The waveforms that maximize and minimize the viscosity

are robust to a finite ramp width even at large r, in contrast to

the spike waveform that maximizes qð/Þ. Increasing the

ramp width of the waveform to w results in an �w change in

the coefficients A2; A4. However, neither A2 nor A4 equal 1

for the maximal or minimal strain waveforms. Thus, there are

no sensitive minima in DðjÞ, unlike the case for the maximal

qð/Þ waveforms, and DðjÞ changes proportional to an O(w)

factor everywhere, instead of Oðwr4Þ in some locations. As a

result, replacing the boxcar waveform by a trapezoidal wave-

form with a small ramp time of duration w changes the maxi-

mal and minimal viscosities change by a small �w fraction.

The difference between the time-averaged viscosities for an

infinitesimal ramp width and for a p=5 ramp width is indistin-

guishable on the scale of Fig. 6(d).

V. MAXIMIZING NORMAL STRESSES

The presence of hydrodynamic normal stresses is severely

restricted by the linearity and reversibility of Stokes flow.

Since reversing time corresponds to changing the sign of the

shear rate, the linearity of Stokes flow implies that reversing

time will change the sign of the stress tensor. Thus, for an

oscillatory flow, all hydrodynamic stresses—including nor-

mal stresses—must time-average to zero, as an average value

FIG. 6. (a) The scaling with aspect ratio of the strain that produces the maximal (brown) and minimal (red) hgðtÞit. (b) The scaling of the maximal (solid dark

orange) and minimal (solid bright orange) hgðtÞit with aspect ratio. The low-amplitude (dashed dark orange) and continuous shear (dashed bright orange) vis-

cosities closely track these two curves.
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does not change sign upon reversing time. While in principle

a hydrodynamic normal stress difference can be nonzero at

any instant of time, in practice hydrodynamic normal stress

differences are usually prevented by additional symmetries.

For instance, in simple shear reversing time corresponds to

reflecting the flow axis. If the suspension microstructure is

symmetric under this reflection, then the normal stress dif-

ference will be identically zero by symmetry. This symme-

try prevents hydrodynamic normal stress differences from

arising in suspensions of rods both at infinite P�eclet [7] and

at zero P�eclet. As a result, most normal stresses in suspen-

sions of nonspherical particles have a nonhydrodynamic

origin, such as from Brownian motion or particle contacts

[5,24,28,29,33,34].

While shear flows that vary simply in time usually pro-

duce no hydrodynamic normal stress differences, more com-

plex waveforms can give rise to a nonzero first normal stress

difference N1 strictly from hydrodynamics. In general,

reversibility of Stokes flow requires that N1 time-average to

0. However, it is in principle possible to create complex

waveforms that have a nonzero N1 at any instant of time dur-

ing the oscillation. To understand the microstructural origins

of a hydrodynamic N1, we look at the normal stress compo-

nents rxx and ryy of Eq. (12), where the x is the flow direc-

tion and y the gradient. Substituting p ¼ ðnx; ny; 0Þ and

evaluating the dot products shows that moments of the orien-

tation distribution, weighted by AH, determine the hydrody-

namic normal stress difference N1 ¼ rxx � ryy

N1=g _cc ¼ 1

2
AHhsin 4/i: (14)

There are also additional Brownian normal stresses in the

suspension; however, since these stresses are Oð1=PeÞ
smaller than the hydrodynamic normal stresses, we ignore

them in the analysis. As visible from Eq. (14), an orientation

distribution that is symmetric /! �/ always produces an

identically zero hydrodynamic normal stress difference,

which is why steady shear and low-amplitude oscillatory

shear have N1 ¼ 0. For a general waveform, however, qð/Þ
does not have this symmetry, and a nonzero hydrodynamic

N1 is possible.

Measuring a nonzero hydrodynamic normal stress would

have important consequences for rheological theories of rod-

like particle suspensions. Frequently, normal stress differ-

ences are measured in steady shear at high Pe. These normal

stress differences arise due to particle contacts, especially in

the semidilute regime [34–37]. However, in a more dilute

suspension this measured N1 could arise either directly, from

contacts, or indirectly, through the effect of particle contacts

on the orientation distribution. Measuring the normal-stress

coefficient AH would provide insight into the range of normal

stress differences that could be expected from hydrodynam-

ics alone and further elucidate the origins of normal stress

differences in suspensions of Brownian rods.

In light of this, we look for a waveform that optimizes the

magnitude of the normal stress viscosity AHh sinð4/Þi=2 from

Eq. (14) after the decay of initial transients (Dt� 1), imagin-

ing a measurement of this viscosity with a pump-probe

experiment as for the shear viscosity. In contrast to the shear

viscosities, due to reversibility of Stokes flow the average nor-

mal stress viscosity is always zero. Instead, we maximize the

average of the absolute value of the normal-stress viscosity

jN1=gc _cj, which will maximize the normal stress signal from a

probe experiment at any given time. Moreover, maximizing

the normal stress viscosity would facilitate a direct measure-

ment of nonzero, hydrodynamic normal stress differences in a

dilute suspension, as opposed to the usually nonhydrodynamic

and semidilute regime normal stress differences that are cur-

rently measured [24,33–35,38].

Figure 7(a) displays the waveform that maximizes the sig-

nal from N1 for a dilute suspension with r ¼ 5:0. Like the

waveforms that maximize and minimize the viscosity, the

strain CðtÞ takes a boxcar shape, alternating between a strain

C¼ 0 and a moderate strain C 
 3:77. This moderate strain

produces a moderately peaked f ðjÞ, as shown in the upper

portion of panel (b). The waveform aligns the peak of f ðjÞ
with one of the broad peaks in the normal-stress term

sinð4/Þ=2, before translating it to align f ðjÞ with the nearby

broad trough for the second half of the cycle. This produces

a symmetric N1 signal that averages to zero but has constant

magnitude throughout the cycle, as shown in Fig. 7(c).

Examining Eq. (14) in detail divulges the structure of the

optimal normal stress waveform. The normal stress term has

four maxima corresponding to sinð4/Þ ¼ 1, at / ¼ ð4nþ 1Þ
p=8, and four minima at / ¼ ð4n� 1Þp=8. The nonlinear

/! j transformation warps these equally spaced maxima

in / into the bunches of maxima and minima visible in Fig.

7(b). For instance, the close maximum/minimum pair near

j ¼ p are the image of the maximum at / ¼ 9p=8 and the

minimum at / ¼ 7p=8. The Jeffery transformation in Eq. (1)

places these two extrema at phase angles jþ �xC
¼ p7 tan�1ðð

ffiffiffi
2
p
� 1Þ=rÞ. Likewise, the broad outer extrema

at jþ �xC ¼ p7 tan�1ðð
ffiffiffi
2
p
þ 1Þ=rÞ correspond to the maxi-

mum at / ¼ 5p=8 and the minimum at / ¼ 11p=8. This

cluster of four extrema are separated from the other cluster

near jþ �xC ¼ 0 by a large, �p distance.

One could try to maximize jN1j by aligning the peak of

f ðjÞ with either the inner set of extrema, at p 6 tan�1

ðð
ffiffiffi
2
p
� 1Þ=rÞ, or the outer set of extrema, at p 6 tan�1

ðð
ffiffiffi
2
p
þ 1Þ=rÞ. However, for any waveform the peak of f ðjÞ

is at least of width �1=r, as suggested in Eqs. (8) and (10).

Thus, attempting to align f ðjÞ with the inner maximum

always results in significant overlap with the nearby inner

minimum. To avoid this problem, the optimal waveform

aligns the outer, broad extrema with the peak of f ðjÞ. The

waveform first aligns f ðjÞ with the broad maximum, produc-

ing a large, positive N1. Aligning the broad maximum with

f ðjÞ reduces the overlap of f ðjÞ with the nearby minimum

and increases the normal stress signal. The waveform then

reverses direction, aligning f ðjÞ with the broad minimum to

create a large, negative N1.

In orientation space, the waveform alternates between

aligning particles along the 5p=8 and 11p=8 axes, which are

near the flow direction (/ ¼ p=2 or 3p=2), as shown in Fig.

7(d). Positioning particles on these axes gives a large normal

stress signal. The boxcar’s strain amplitude is large enough

to orient the distribution away from isotropy [Fig. 7(d)
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(multimedia view in the supplementary material)]. In con-

trast, attempting to orient the particles onto the inner set of

extrema, at / ¼ 7p=8 and 9p=8, results in a strain amplitude

that is too small to significantly orient the distribution and

that overlaps significantly with the adjacent extrema of oppo-

site sign, creating a weak normal stress signal.

From this understanding of the optimal jN1j waveform,

we can predict the scaling of the strain and normal stresses

with aspect ratio. Since the broad maxima and minima are

separated by dj ¼ 2 tan�1ðð
ffiffiffi
2
p
þ 1Þ=rÞ, and since �x � 1=r

for large r, alternating the alignment of f ðjÞ between the two

broad extrema should require a strain jump of C 

2r tan�1ðð

ffiffiffi
2
p
þ 1Þ=rÞ 
 4:8 for large r. Instead, Fig. 8(a)

shows that C asymptotically approaches a strain of 
5:22,

which is slightly higher than the above value. By positioning

the peak in f ðjÞ slightly outside the skewed, broad extrema in

the normal stress term, the optimal waveform reduces overlap

with the nearby inner extrema of opposite sign. At moderate

r � 5, the strain producing the maximal-jN1j approaches its

asymptotic value slowly but still approximately follows the

C � 2r tan�1ðð
ffiffiffi
2
p
þ 1Þ=rÞ scaling above. Like the case for

the shear viscosity, f ðjÞ for the normal stress waveform never

approaches zero. As a result, the maximal and minimal values

of the expectation hsinð4/Þi are always of order 61 indepen-

dent of r, and the magnitude of the N1 signal in Fig. 8(b) grows

solely due to the growth of AH with aspect ratio.

Interestingly, the magnitude of the normal stress created

by the boxcar waveform scales differently than the normal

stresses produced by fiber contacts. The boxcar waveform

creates a large N1 by strongly altering the orientation distri-

bution from the steady shear distribution. As a result, the

normal stress scales as N1= _c � cAH � cr2=ln r, where c is

the particle volume fraction. In contrast, interparticle con-

tacts can only weakly affect the orientation distribution,

since long aspect ratio particles rotate like lines of dye in the

flow, and lines of dye do not intersect [35]. This weak

change in the orientation distribution results in a normal

stress that scales either as N1= _c � cr [35] or as N1= _c � cr3=2

[39], which increase more slowly with r than the boxcar’s

N1. Thus, for large aspect ratio rods sheared with the optimal

FIG. 7. (a) The waveform that maximizes the average of the absolute value of the normal-stress viscosity, for a suspension with r ¼ 5:0. The optimal wave-

form has a ramp-width of zero, as shown in the figure. (b) Top panel: The corresponding f ðjÞ. Bottom panel: The corresponding normal stress term sinð4/Þ=2

at the start of the cycle (black), and its position at the middle of the cycle (gray). (c) N1=gc_c as a function of time in the cycle. N1=gc _c is equal and opposite

during the two halves of the cycle, averaging to zero. (d) The orientation distribution qð/Þ, for �p=2 < t < p=2 (light green) and for p=2 < t < 3p=2 (dark

green), with the continuous shear distribution (dotted line) for comparison. Since the waveform is symmetric under time reversal, the two distributions are sym-

metric under a reflection about the gradient axis. The large normal stresses arise from orienting the particles along / ¼ ð2nþ 1Þp=8, where the normal stress

term is large in magnitude (multimedia view in the supplementary material).
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boxcar waveform, the normal stress should be strictly hydro-

dynamic in origin with only weak corrections due to fiber

contacts, and it should be possible to directly measure a

hydrodynamic N1 in a suspension of rodlike particles.

VI. CONCLUSIONS

In this paper, we have explored the possibility of design-

ing oscillatory shear waveforms to control suspensions of

rodlike particles, by examining the behavior of these suspen-

sions at high Pe � 1=DTcyc and after initial transients have

decayed (Dt� 1). Our approach to optimizing an oscillatory

shear waveform is generic and can be implemented to opti-

mize any desired property of a sheared suspension that

depends on particle orientations. While an exhaustive explo-

ration of waveforms for every property is impossible, many

simple properties will be optimized by waveforms similar to

those shown here. For instance, while particle alignment

determines suspension conductivity [17] and flow-dichroism

[40], the relevant order parameter is not the maximum of q
but the liquid-crystal order parameter S2, which is the maxi-

mal eigenvalue of the traceless symmetric second-rank

orientation tensor Q ¼ pp� d=2. Likewise, the elasticity of

a fiber-reinforced composite depends on fourth-order

moments of the particle orientation, such as the analogous

S4. While these order parameters are different from the maxi-

mum of q, we find empirically that the waveform that maxi-

mizes q at the start of a cycle also maximizes S2 and S4.

Alternatively, rather than maximize the particle alignment

by maximizing qð/Þ, one might desire to minimize the parti-

cle alignment along one direction. We find empirically that

the waveform in Fig. 2 that maximizes particle alignment

also most strongly minimizes the particle alignment along a

different direction—the strong enhancement of qð/Þ � r2 at

/ ¼ p=2; 3p=2 also results in a �1=r2 suppression of orien-

tations at / ¼ 0; p.

All of our analysis has necessarily been limited to orienta-

tions confined to rotate in the flow-gradient plane, as there is

no simple solution for fully rotating particle orientations

under arbitrary shear waveforms. Nevertheless, while the

quantitative details of the results may change for fully three-

dimensional orientations, the qualitative picture should

remain the same. The / dynamics of a freely rotating particle

in a simple shear flow are the same as one confined to the

flow-gradient plane. Moreover, preliminary analysis [9] and

experiments [10] suggests that the j dynamics remain simi-

lar for freely rotating orientations as for those confined to the

flow-gradient plane. Since the results above have simple

interpretations in terms of the particle phase angles j, the

optimal waveforms should be similar for real suspensions.

The waveform that maximizes particle alignment should

remain the same for freely rotating particles. The simplicity

of the spike waveform allows for the calculation of the orien-

tation distribution for freely rotating particle orientations.

For almost all of the spike waveform, the particle orienta-

tions are at rest at a single strain value. Keeping the orienta-

tions at rest causes diffusion to drive the distribution to

isotropy for most of the cycle, as for the orientations con-

fined to the flow-gradient plane considered above. The spike

then advects this initially isotropic distribution by one-

quarter of a Jeffery orbit, rapidly enough where diffusion

cannot alter the distribution. Thus, the distribution at the cen-

ter of the spike is the same as that of an isotropic distribution

advected by one-quarter of a Jeffery orbit without diffusion,

which is easily calculable analytically [41]

q h;/ð Þ ¼ 1

4p
1

cos2 hþ r2 cos2 /þ r�2 sin2 /
	 


sin2 h
� �3=2

:

(15)

The distribution is maximal along the flow direction, at h ¼
p=2 and / ¼ p=2, with a value qðp=2; p=2Þ / r3. The spike

aligns both the particle’s azimuthal angle / and polar angle

h. As visible from Eq. (1), the Jeffery orbits pinch near the

flow direction, with the separation between particles on dif-

ferent orbits decreasing by an amount �1=r when oriented

along the flow direction versus along the gradient direction.

Since the spike waveform first orients a large fraction of

FIG. 8. The scaling with aspect ratio of (a) the boxcar waveform strain that produces the maximal normal stress signal, and (b) the normal stress viscosity

itself.
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particles near the gradient direction before rapidly rotating

them to the vorticity direction, it strongly pinches the distri-

bution into a �1=r region in h. Moreover, since the phase

angle j completely determines the azimuthal angle /, the

spike waveform in Sec. III will still align the / component

of the particle orientations into a �1=r2 region. Combining

these two effects results in the �r3 alignment visible in Eq.

(15). Due to the additional spread in h, freely rotating orien-

tations are less strongly aligned than orientations confined to

the flow gradient plane, as shown by the plot of 1� hp2
f lowi

shown in Fig. 9. Nevertheless, since the spike waveform

takes advantage of both the �1=r pinching of the orbits and

their �1=r2 bunching, it aligns particle orientations more

strongly than continuous shear, and we expect that the spike

waveform optimally aligns real, freely rotating particle

orientations.

The waveforms that extremize the viscosity should also

be similar between freely rotating orientations and those con-

fined to the flow-gradient plane. Two separate effects change

the rheology of a suspension of freely rotating particles.

First, the rocking of the Jeffery orbit changes the h compo-

nent of the orientation, creating an additional source of time

dependence in the orientation moments that determine the

suspension stress. Second, the form of the orientation

moments themselves changes when the particle orientations

have a nonzero component along the vorticity direction. For

example, the variations in the shear stress are completely

determined by the moment AHh1� cos 4/i=8 when the par-

ticle orientations are confined to the flow-gradient plane, cf.

Eqs. (12) and (13). Moreover, when the particles rotate

freely, an additional orientation-dependent moment BHhn2
x

þn2
yi also enters into the shear stress. This additional

moment oscillates in magnitude with strain as the Jeffery

orbit rocks particle orientations toward and away from the

vorticity direction. However, the magnitude of BH decreases

rapidly as the particle aspect ratio increases, while that of AH

increases significantly [4]. As a result, the waveforms that

extremize the shear viscosity for real suspensions should

only differ slightly from those with orientations confined to

the flow-gradient plane, with the differences solely due to the

rocking of orientations toward and away from the vorticity

direction. The waveform that extremizes the normal stress vis-

cosity should likewise remain similar to that discussed above,

as the moment that determines N1 changes only slightly from

that in equation (14) to AHhsin4 h sin 4/i=2, only picking up a

factor of sin4 h.

Possessing a full solution to the orientation dynamics

would allow for investigation of these properties. More inter-

estingly, a full solution would allow for the possibility of

controlling shear flows where the principle axes of the strain

change directions during the course of a cycle. Such wave-

forms could perhaps separately maximize the signal from all

the hydrodynamic coefficients AH, BH, and CH.
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APPENDIX: NUMERICAL METHODS

1. Numerical methods

To find the optimal waveforms, we parameterized the dis-

tributions by the lowest 80 real Fourier coefficients. For all

of the properties optimized in the text, there are many local

minima in this fit space of Fourier coefficients. For instance,

frequency-doubling a waveform produces the same distribu-

tion as the original waveform, aside from differences due to

a finite number of Fourier coefficients. Reversing time

CðtÞ ! Cð�tÞ or the sign CðtÞ ! �CðtÞ do not change the

distributions. Shifting a waveform by a half-integer Jeffery

orbit CðtÞ ! CðtÞ þ npðr þ 1=rÞ=2 does not change the

FIG. 9. Orientation alignment for freely rotating orientations. (a) Alignment as measured by the maximal value of qð/Þ, for both freely rotating orientations

(blue) and orientations confined to the flow-gradient plane (red), under both the optimally aligning spike waveform (solid lines) and steady shear (dashed

lines). (b) Alignment as measured by 1� hp2
f lowi, where pflow is the projection of the rod’s unit normal along the flow direction.
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distributions. For the properties that are averages over a

cycle, shifting the phase of the waveform CðtÞ ! Cðtþ dÞ
does not change the measured response. Combining these

transformations creates a complicated fit landscape with

many local minima and equivalent waveforms. To navigate

this landscape, we chose 100 random initial guesses for the

Fourier coefficients and optimized each one of these with a

deterministic BFGS algorithm as implemented in PYTHON

(scipy) [42]. We chose BFGS because it assumes that a mini-

mum is locally quadratic in the fit parameters, which is the

case for our parameterization.

The results of these 100 fits for each waveform are shown

in Fig. 10, with the top 5 of the 100 waveforms highlighted.

The plot clearly demonstrates the complexity of the fit land-

scape. For instance, the maximal alignment waveforms

[panel (a)] show a jump between equivalent waveforms sep-

arated by half a Jeffery orbit in strain. Phase shifts, sign

changes, and period doubling are clearly visible in the

extremal viscosity and normal stress waveforms. In addition,

since the optimal waveforms are not smooth, significant

Gibbs ringing is visible in the fitted waveforms. Fortunately,

since the waveform determines the long-time phase angle

distribution f ðjÞ through an integral relation [Eq. (7)], the

short Gibbs ringing deviations from the optimal waveform

have little effect on f ðjÞ.
Examining the best waveforms by eye quickly divulges

what the correct simple, optimal waveform should be (e.g.,

the spike and boxcar waveforms); the vast majority of the fit-

ted waveforms have a variation on the boxcar or spike wave-

form. Using the realization that the optimal waveforms are

simpler spikes or boxcars, we then reoptimize using the sim-

pler waveform with several free parameters. For the spike

waveform, we optimize the spike height, ramp time, and

phase, and for the boxcar the boxcar height, boxcar width,

and ramp time—since the optimized viscosities are averages

over the waveform, we do not optimize the boxcar phase.

For the optimal distributions as well as the shear and normal

stresses, the simple waveforms always produce a better value

than any of the Fourier-parameterized waveforms, probably

due to the slow convergence of the Fourier basis due to

Gibbs ringing. Finally, to evaluate the scalings with aspect

ratio we only optimized over the simple waveform, at 100

aspect ratios logarithmically spaced from 1 to 100. This

approach of starting with a model-independent Fourier

FIG. 10. All 100 of the best-fit Fourier waveforms for maximizing alignment (a), maximizing viscosity (b), minimizing viscosity (c), and maximizing normal

stress signals (d). The 5 best waveforms for each case are highlighted, with the best waveform in green and the fifth-best in blue; the other 95 are in gray. With

the exception of the maximal alignment Fourier waveforms, the highlighted waveforms for each panel produce an equal response to 1 part in 104.
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search and finishing with a parameterized model of the opti-

mal waveform provides the best of both worlds, promising

the optimal waveform through the breadth of the Fourier

search and the providing the best-possible value through a

waveform that eliminates Gibbs ringing.

To evaluate distributions and stresses for a particular

waveform, we evaluated the coefficients A2; d2; A4; d4 from

Eq. (10) numerically and used those coefficients to recon-

struct DðjÞ and a numerically normalized f ðjÞ. Empirically,

it is necessary to use a somewhat high number of quadrature

points (900 for r ¼ 5:0 and up to 12 000 for the r ¼ 100:0
values shown in the scaling plots), as the waveforms dis-

cussed in this paper are somewhat pathological and not ana-

lytic, and a simple trapezoidal rule is therefore not

exponentially convergent [42]. For the tent and spike wave-

forms, we choose the quadrature points to be only where the

waveform is varying, while for the Fourier waveforms we

used equally spaced quadrature points.
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