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In the selective withdrawal experiment, fluid is withdrawn through a tube with its tip suspended above a
two-fluid interface. At sufficiently high flow rates, the interface undergoes a transition so that the lower fluid is
entrained with the upper one, forming a spout. Previous experiments address the scalings and similarity profiles
characterizing steady states of the system near the transition for one combination of fluids. In the present study,
we show that these scalings and similarity profiles extend to systems with different viscosity ratios. Surpris-
ingly, we find no dependence of the scalings and similarity profiles on the lower fluid viscosity. We use the
results of a low-Reynolds-number flow dimensional analysis to show that for different fluid combinations the
curves denoting the transition straw height as a function of flow rate can be collapsed. Finally, these results are
used to argue that in the low-Reynolds-number regime, the capillary length sets the scale for the final curvature
of the interface before the transition.
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I. INTRODUCTION

A look at Edgerton’s photographic sequences [1] of the
breakup of a drop interface as it drips from a faucet should
instantly convince any skeptic that there is something fasci-
nating about a fluid interface changing its topology, which
hints at the richness of the underlying physics. Much atten-
tion has been devoted toward classifying these topological
transitions in fluid systems [2–8] in the same manner as one
classifies thermodynamic transitions. Cohen and Nagel [9]
show that this established approach, used by others to study
drop snap-off dynamics [10–12], extends to the study of
steady-state interface profiles near the topological transition
associated with selective withdrawal. In this paper, we de-
scribe how a change in the fluid viscosities affects the results
of Cohen and Nagel.

In the selective withdrawal experiment a tube is immersed
in a filled container so that its tip is suspended a height S
above an interface separating two immiscible fluids (Fig. 1).
When fluid is pumped out through the tube at low flow rates,
Q, only the upper fluid is withdrawn. The flows deform the
interface into an axisymmetric steady-state hump with a
stagnation point at the hump tip (Fig. 1). The hump grows in
height and curvature as Q increases (or S decreases) until the
flows undergo a transition where the lower fluid becomes
entrained in a thin axisymmetric spout along with the upper
fluid. The interface becomes unbounded in the vertical direc-
tion, the stagnation point moves from the hump tip into the
interior of the lower fluid, and the upper fluid geometry be-
comes toroidal thus changing the topology of the steady
state. Once the spout has formed, an increase in Q (or de-
crease in S) causes the spout to thicken.

Near the transition, the steady-state mean radius of curva-
ture at the hump tip, 1 /�, can be orders of magnitude smaller

than the length scales characterizing the boundary conditions
(for example the tube diameter, D). Fixing S and looking at
the steady-state profiles as Q is increased, Cohen and Nagel
observe that, up until the transition, both the hump curvature
and height display scaling behavior characteristic of systems
approaching a singularity. While similar scaling has been
hypothesized for a system analogous to the 3D selective
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FIG. 1. Diagram of the experimental apparatus and photographs
of the steady-state interface. Fluid is withdrawn from the with-
drawal container and deposited into a waste container. The upper
fluid is then siphoned back into the withdrawal container. Viewed
bottom to top, the photographs show the evolution of the steady-
state interface as Q is increased. The top photograph of the interface
in the spout state is from Cohen et al. [13]. The middle photograph
of the hump at the transition flow rate is from Cohen and Nagel [9].
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withdrawal system [14], this is the first time such scaling has
been observed in the experiments. Cohen and Nagel then use
the scaling relations to collapse the hump profiles near the
transition onto a series of similarity curves. In doing so, they
show that it is possible to treat the transition as “weakly-
first-order.” In Sec. IV, we show that the scalings and simi-
larity profiles observed by Cohen and Nagel extend to sys-
tems with different viscosity ratios.

The manifestation of a true singularity would entail the
divergence or vanishing of some physical quantities or length
scales describing the system. However, for the range of pa-
rameters explored thus far, even when the system is arbi-
trarily close to the transition, � remains finite. In Cohen and
Nagel [9], a system near the transition with a surface tension
of 31 dynes/cm and fluid viscosities of 1.7 and 2.9 P �1 P
�1 g/ �cm s�� for the upper and lower fluids, respectively, is
shown to have a mean radius of curvature at the hump tip
which is 200 �m.

Investigation of the viscosity-ratio dependence is clearly
important for understanding the origin of the curvature cutoff
in such systems. For the analogous 2D problem, which cor-
responds to replacing the tube with a line sink, Jeong and
Moffatt [15] show that for an inviscid bottom fluid and vis-
cous upper fluid, the 2D hump interface increases its curva-
ture continuously with flow rate. Eggers [16] extends this
theoretical result to show that when the lower fluid has a
finite viscosity, this increase in curvature is cut off and the
system undergoes a transition to a different steady state. In
this new state, a sheet of the lower fluid is entrained along
with the upper fluid into the line sink. However, the finite
lower fluid viscosity prevents the 2D hump profiles from
scaling onto a similarity solution. In contrast, Cohen and
Nagel [9], in their 3D selective withdrawal experiments, do
observe scaling behavior and profile collapse onto a similar-
ity solution. Here, we show that performing the selective
withdrawal experiments with a less viscous lower fluid does
not get the system closer to the singularity. Furthermore, in
Sec. V dimensional analysis is used to argue that the capil-
lary length sets the scale for the value of the curvature cutoff,
�u.

In the 2D system, the lower fluid viscosity dramatically
affects the location of the transition to the Eggers solution
[17]. In the selective withdrawal problem, nearly all of the
experimental studies found in the literature are concerned
with modeling large-scale extraction and use low-viscosity
fluids to model the flows (see, for example, [18–23]). There-
fore, the effects of viscous stresses in the experiments have
remained unexplored. One exception arises in the modeling
by Blake and Ivey [24] of magma layer mixing during vol-
canic eruptions. However, the fluids in these experiments are
miscible. As pointed out by Lister [25], when surface tension
is absent, there is always some fraction of the lower fluid that
is extracted so that these experiments are not tracking the
actual withdrawal transition. Cohen and Nagel’s study takes
into account the effects of the surface tension in an experi-
ment mapping out the transition location for low Reynolds
number flow. Here, that study is extended to address the
dependence of the transition location on the fluid viscosities
(Sec. V). For the range of parameters explored, only the
upper fluid viscosity affects the transition location.

II. CHARACTERIZATION OF FLUIDS
AND EXPERIMENTAL DETAILS

The parameters relevant for this experiment (see Fig. 1)
are the upper and lower fluid viscosities and densities (�a,
�b, �a, �b), the interfacial tension ���, the orifice diameter
�D�, the height of the orifice above the interface �S�, the flow
rate �Q�, the fluid height above the interface �La�, the fluid
layer depth below the interface �Lb�, the container size, and
the surfactant concentration.

The fluids used are heavy mineral oil (HMO), light min-
eral oil (LMO), silicone oil (polydimethylsiloxane, or
PDMS, with an average molecular weight of about 31 000),
salt water, and mixtures of glycerin and water. No surface
chemistry is observed at the two-fluid interfaces even when
the liquids remain in contact for periods longer than a month.
However, a slight change in the transition flow rate at fixed S
over a period of days indicates that the surfactant concentra-
tion at the interface increases with time. When the system is
in the spout state, surfactants at the interface are “swept” into
the straw. Leaving the system in the spout state for long
periods of time, reduces the surfactant concentration over the
entire interface. Once the surface has been cleaned, none of
the results are significantly affected by the moderate increase
in surfactant concentration, which occurs over a period of
one week (see the Appendix for more details).

The viscosity � is measured using calibrated Cannon Ub-
belohde viscometers immersed in a Cannon constant tem-
perature bath. In this manner the viscosity can be determined
to within ±5%. Glycerin can be diluted with water so that the
resultant fluid has 0.01���14.9 P [26]. The surface ten-
sion, �, of the two-fluid interface is determined using the
pendant drop method (see, for example, [27,28]), which
takes advantage of the competition between the surface ten-
sion and buoyant forces acting on a static drop hanging from
a nozzle. The buoyant forces distort the drop from a spheri-
cal shape. Measuring the distortion and density mismatch
allows a determination of the surface tension. Implementa-
tion of this technique on water, toluene, and di-
methylformamide shows a capability for measuring the sur-
face tensions to within ±10%. The fluid systems studied and
their properties are listed in Table I.

In the experiments, a large tank �30 cm	30 cm
	30 cm� capable of holding fluid layers that are each about
12 cm in height is used as the withdrawal container. Fluid is
pumped out of the withdrawal container and into a waste
container. When the system is in the spout state, the fluids
enter the waste container as an emulsion. This emulsion is
deposited at the bottom of the waste container, which is
where the droplets comprised of the lower fluid remain. The
upper fluid is siphoned back into the withdrawal container at
a rate that matches the withdrawal rate, thereby keeping La
constant. The recycled fluid is deposited about 18 cm away
from the region under investigation and does not affect the
flows. Lb remains constant when the system is in the hump
state and decreases with time when the system is in the spout
state. However, even for thick spouts (0.1 mm in diameter)
and for large flow rates �10 ml/sec� Lb decreases at the very
slow rate of 0.01 mm/min which corresponds to a 0.1%
change in the straw height, S.
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The fluids are withdrawn using a rigid plastic pipet that is
connected with tygon tubing to a B9000 Zenith metering
gear pump with a variable speed DC motor. A Dynapar Ro-
topulser encoder is used to read out the withdrawal rate. The
pump uses gears to displace fluid from the pump intake to
the pump outlet. There are small variations in flow rate as-
sociated with the filling and draining of the gaps between the
gear teeth. However, at large flow rates, or equivalently at
high rotation frequencies, these variations damp out and the
amplitude of the remaining noise corresponds to a very small
percentage of the total flow rate. High rotation rates also
average out the fluctuations in the driving motor. Using big-
ger or smaller pump attachments allows for pumping of the
fluid at the same flow rate, but at a different gear rotation
rate. This allows for the determination of the effects of noise
in the flow rate on the transition. A further reduction of the
noise in the experiments is achieved by siphoning the fluids
into the waste container. However, when siphoning, the
maximum rate of withdrawal is substantially smaller.

The apparatus is illuminated from the rear and a CCD
video camera is used to image silhouettes of the steady-state
hump shapes. The images are transferred onto a PC where an
edge tracing IDL program tracks and records the points
where the derivative of the pixel-intensity profile across the
hump interface is extremized. The profiles are then superim-
posed onto the original images and checked for accuracy. In
order to determine the mean curvature at the hump tip �,
either a Gaussian function or a parabola is used to fit the tip
of the recorded hump profile. The value of � is taken to be
the curvature of the fitting function at the hump tip. How-
ever, depending on the width of the region chosen for the fit,
the value of the measured curvature can vary by up to 50%.
In order to make the choice of fitting region less arbitrary,
first, the entire hump profile is fit with a Gaussian function.
The fitting region is then taken to be one-tenth of the Gauss-
ian decay length. Finally, the hump profile is fit with the
parabola or Gaussian in the fitting region. Using this proce-
dure the values of � obtained from the Gaussian and para-
bolic fits are within 5% of each other. The curvatures re-

ported in this paper are taken from the Gaussian fits.
Using this apparatus, we test the effects of the container

walls and thickness of the upper fluid layer on the transition
flow rate Qu at constant S. Note that the switch in notation
from Su versus Q to Qu versus S keeps the subscript with the
variable that is being tuned when obtaining a given data
point in the experiment. Figure 2(a) shows a plot of Qu ver-
sus the distance Lw from one of the container walls while S is
held constant. The fluid parameters for this particular experi-
ment correspond to those of system 3 in Table I. For Lw
greater than 2 cm there is very little variation in Qu. Figure

TABLE I. List of the properties for each fluid system studied. Row 3 lists the symbols used in plotting the experimentally measured Su

curves in Figs. 3, 6, and 7. The last row lists the power-law exponent 
 used in fitting the curves in these figures.

System 1 System 2 System 3 System 4 System 5 System 6 System 7

Upper Fluid PDMS PDMS PDMS PDMS HMO HMO LMO

Lower Fluid H2O Salt H2O Water/Glycerin Glycerin H2O Water/Glycerin H2O

Su Symbol � + � � o � �

� �dynes/cm� 43 40 29 23 35 31 34

�a �g/ml� 0.97 0.97 0.97 0.97 0.87 0.87 0.85

�b �g/ml� 1.00 1.11 1.24 1.26 1.00 1.24 1.00

�� �g/ml� 0.03 0.14 0.27 0.29 0.13 0.37 0.15

�a �g/cm s� 9.7 9.7 9.7 9.7 1.7 1.7 0.48

�b �g/cm s� 0.010 0.013 2.9 12.3 0.010 2.9 0.010

�b /�a 1.0	10−3 1.3	10−3 3.0	10−1 1.26 5.9	10−3 1.7 2.1	10−2

kusat�1/cm� 12±3 27±7 22±5 25±5 31±7 48±10 5±1

kusatlc 14±5 14±5 7±3 7±3 16±5 14±4 2±1


 0.44 0.42 0.41 0.40 0.32 0.30 0.30

FIG. 2. (a) plots the transition flow rate Qu versus the distance
between the withdrawal tube and the container wall Lw for system 3
in Table I. (b) plots Qu versus the upper fluid layer thickness La for
system 5.
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2(b) shows a plot of Qu as a function of La for constant S.
The fluid parameters correspond to those of system 5. As La
is increased, Qu first increases but eventually saturates and
remains constant for La greater than about 3 cm. In all of the
experiments Lb is typically kept at about 12 cm. Measure-
ments of the transition flow rates show no significant varia-
tions between systems with an Lb of 12, 10, and 6 cm. Simi-
lar measurements for the Qu dependence on Lw, La, and Lb
are conducted for all of the different fluid combinations used
in the experiments. For the tube diameters (D=0.16 cm and
D=0.79 cm), tube heights �0.07 cm�S�2.0 cm�, and flow
rates �Q�20 ml/sec� used in the experiments, the container
walls are kept sufficiently distant and the fluid layers are kept
sufficiently thick so as not to affect the flows.

III. TRANSITION STRUCTURE AND HYSTERESIS

For the entire range of parameters explored thus far, the
evolution of the steady-state hump profiles is cut off by the
hump to spout transition before � diverges. Cohen and Nagel
show that for transitions occurring at low Q, or equivalently
at small Su, this cutoff is accompanied by a measurable hys-
teresis in the transition: the straw height at which the spout
decays back into a hump is greater than Su by a distance �S.
As the system undergoes the transition at higher Qs, �S de-
creases exponentially and eventually becomes too small to
measure. It is observed that the radius of curvature cutoff
1 /�u has the same exponential decay with Q as does the
hysteresis before saturating to a constant value 1/�usat at
high Q. The curvature saturation values for all of the systems
studied are shown in Table I.

When transitions occur at low S or Q, the ratio of the
withdrawal tube diameter D to the straw height S is of order
one. As a result, the straw diameter can set a length scale for
1 /�u. Figure 3 shows the effect of a factor of five increase in
D on the Su and 1/�u curves. The solid line in Fig. 3(a) is a
fit to the D=0.16 data and has the form SuQ0.3±0.05. The
two Su curves in Fig. 3(a) show no significant dependence on
D. As shown by Cohen and Nagel [9], for the range of flow
rates explored, �S is at least an order of magnitude smaller
than Su. Therefore, the variations due to the hysteresis are not
expected to have a noticeable effect on the Su values. The
1/�u curves in Fig. 3(b) are fit (dash dot) with the forms
1/�u=0.02+0.32 exp�−Q /0.032� and 1/�u=0.02+2.3
exp�−Q /0.22� for the D=0.16 cm and D=0.79 cm data sets,
respectively. The onset of the flat asymptotic dependence for
1 /�u occurs at higher Q for larger straw diameters. This
evidence indicates that the initial decrease in 1/�u results
from the finite width of the withdrawal tube. Consequently,
there is more than one mechanism responsible for the tran-
sition cutoff. At large values of Su these finite size effects
vanish and the value of 1 /�u is determined by the fluid pa-
rameters. The discussion of scaling behavior for the hump
profiles is restricted to this regime.

IV. COMPARISON OF SCALING ANALYSIS AND
SIMILARITY SOLUTIONS

In order to determine the effects of �b on the transition
structure, we compare the Cohen and Nagel scaling and

similarity solution results for system 6 to those of system 5
where �b is 300 times smaller. The scaling analysis compari-
son in the next subsection focuses on how � changes as the
transition is approached. This analysis is, therefore, localized
to the hump tip. The hump profiles can be collapsed onto
similarity curves as described in Sec. IV B. The similarity
curve comparison focuses on the shape of the profile beyond
the hump tip. In Sec. IV C we describe the connection be-
tween the treatments.

A. Scaling analysis of hump curvature reveals the same
exponents

For a given straw height, as Q is increased the hump
profile grows in height hmax and curvature �. Figure 4(a)
plots hmax versus � for four representative data sets taken at
different S. The data suggests that for each curve, as hmax
approaches its asymptote hc, � diverges. Indeed, it is ob-
served that for all straw heights �hc−hmax� /hmax��. Here,
the value of hc is used as a fitting parameter. Note that the
transition cuts off the evolution of the hump states prevent-
ing the system from getting arbitrarily close to the singularity
and limiting the precision with which the exponents � can be
determined. The power laws for curves corresponding to dif-
ferent S have different prefactors. We, therefore, divide � by
the power-law prefactor n in order to collapse the curves
onto a single-scaling curve. The physical interpretation of the
constants n�S� is given in Sec. IV B. Figure 4(b) plots �hc

−hmax� /hmax as a function of the normalized curvature � /n.
The excellent collapse indicates that all of the divergences

FIG. 3. Plots of Su (a) and 1/�u (b) as a function of Q for two
different tube diameters D. The open symbols depict the curves for
system 6 with D=0.79 cm. For comparison, the closed symbols
reproduce the Cohen and Nagel [9] data for system 6 with D
=0.16 cm.
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have the form �hc−hmax� /hmax= �� /n�� with �=−0.86±0.10.
For system 6 Cohen and Nagel obtain �=−0.85±0.09.

B. Similarity solutions show hump profiles are identical

For any given S, the value of hc taken from the scaling
relations for the hump height and curvature can be used to
collapse the hump profile shapes near the transition onto a
similarity curve. Cohen and Nagel define the scaled variables
as follows:

H�R� =
hc − h�r�
hc − hmax

and R =
r�

n
. �1�

Here h�r� is the hump profile and r is the radial coordinate.
This transformation shifts and scales the profiles so that the
cusp of the singular solutions is positioned at the origin and
the maximum hump heights are located at H=1 and R=0.
Figure 5(a) overlays eight hump profiles for the S
=0.667 cm data set. Figure 5(b) shows the same profiles af-
ter scaling. Excellent collapse of the hump profiles is ob-
served. A power-law fit to the scaled profiles in the region
beyond the parabolic hump tips [solid line in Fig. 5(b)]
shows that H�R�= �� /n�x with x=0.72±0.10. For system 6
Cohen and Nagel observe that x=0.72±0.08.

Figure 5(c) shows a comparison of the similarity solutions
for five different tube heights. These profiles all display the
same power-law dependence. Here, n [taken from Fig. 4(b)]
is used to scale the radial components of these profiles and
obtain good collapse for curves corresponding to different

straw heights. The constants n decrease with increasing S
indicating that the profiles become shallower at large S. The
decrease is roughly described by the relations n�11
exp�−2.5S� and n�10 exp�−2.5S� for systems 5 and 6, re-
spectively. The origin of this dependence is not understood.
The points of deviation for the S=0.445 cm profile (crossed
box symbol), mark the transition from the similarity regime
to the matching regime beyond which the profiles become
asymptotically flat. At large enough radii all of the scaled
profiles display these deviations.

As a final check, Fig. 5(d) shows a comparison of the the
system 6 similarity profile for S=0.831 cm and the system 5
similarity profile for S=0.667 cm. Figure 5(e) plots the re-
siduals �i, which correspond to the minimum distance be-
tween each point on the system 6 curve and the value of a
local linear fit to the system 5 curve at the same R value. An
error analysis calculation for the data points located between
−5�R�5 (where �i are centered around zero) shows that
�2�1.6 [36]. This �2 value indicates that the differences
between the two similarity curves are on the same order as
the experimental uncertainty, which is taken to be a quarter
of a scaled pixel. This error analysis, in conjunction with the
close agreement between the power-law exponents x and the

FIG. 4. Scaling for the hump mean curvature � and height hmax

for fluid system 5 in Table I. (a) plots hmax versus � for data sets
corresponding to four representative straw heights. (b) plots �hc

−hmax� /hmax versus � /n for the entire data set corresponding to 20
different straw heights. The line corresponds to a power law with an
exponent of −0.86.

FIG. 5. The scaled hump profiles for system 5 along with a
comparison of the similarity profiles for systems 5 and 6. (a) shows
eight profiles taken from the S=0.667 data set for system 5. (b)
shows the same profiles after scaling. The solid line corresponds to
a power law of the form R0.72. (c) compares the similarity curves for
the S=0.984 cm, 0.921 cm, 0.889 cm, 0.667 cm, and 0.445 cm data
sets. (d) overlays the similarity profiles for system 5 with S
=0.667 (open symbols) and system 6 with S=0.830 (closed sym-
bols). (e) shows a plot of the residual quantity �i for the data points
in (d). The region between the vertical dotted lines corresponds to
the similarity regime where the residuals become centered around
zero.
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prefactors n indicates that the similarity solutions describing
the profiles of systems 5 and 6 are nearly identical.

C. The localized scaling relations predict the form
of the similarity solutions

The scaling relation in Fig. 4(b) can be used to predict the
exponent x in the power-law fits to the similarity solutions in
Figs. 5(b)–5(d). Inserting the observed scaling dependence
for the hump tip �hc−hmax� /hmax= �� /n�� into the observed
form of the similarity profile H�R�=Rx, the following rela-
tion is obtained:

hc − h�r�
hmax

��

n
�−�

= rx��

n
�x

. �2�

Since, for a given r, the functions �hc−h�r�	 /hmax and rx

have constant values, x must equal −�. More intuitively, for
a given S, as Q is increased, the parabolic-tip regions de-
crease their radial length scale at a rate tracked by the term
n /� and are simultaneously pulled toward the singularity in
the axial direction at a rate tracked by the term �hc

−hmax� /hmax leaving behind power-law profiles with expo-
nents that reflect the scaling observed in Fig. 4(b).

Recall that the fits to the similarity profiles gave the ex-
ponents x=0.72±0.10. and x=0.72±0.08 for systems 5 and
6, respectively. Both of these exponents are within error (al-
though slightly smaller) of the exponents observed in the
scaling relations which gave the exponents −�=0.86±0.10
and −�=0.85±0.09 for systems 5 and 6, respectively. The
slight differences between the values of the exponents −�
and x in both systems imply that the similarity profile may be
influenced by the matching region, which connects the local
similarity solutions with the flat interface at r→�. Such ef-
fects are known to manifest themselves in the coating of thin
threads [29]. There, threads pulled through a fluid medium
are coated with a thin film whose thickness, under the right
conditions, is determined by the matching of the local solu-
tion to the static nonlocal meniscus at r→�.

What sets the value of the exponents � and x? Typically,
the observed scaling dependencies in these types of problems
result from the balance of the relevant stresses in the region
where the curves collapse onto similarity solutions. For ex-
ample, a scaling analysis where the viscous stresses of the
upper and lower fluids balance the stress arising from the
interfacial curvature predicts linear scaling dependencies and
conical profile shapes [11]. The nonlinearity of the observed
dependencies and the lack of dependence of the similarity
solution on �b indicate that a different stress balance may
govern the flows (e.g., viscous stress due to upper fluid bal-
ances the stress due to the interface curvature).

The comparisons described in this section have shown
that the only difference between the scaling dependencies
and similarity solutions is a 10% increase in the value of the
power law prefactors n�S� for system 5. With the exception
of this slight difference, the comparison demonstrates that
for this range of viscosity ratios, �b does not affect the scal-
ing relations and similarity profiles near the selective with-
drawal transition. Thus, the 3D problem is fundamentally
different from the analogous 2D problem, where a small but

finite lower fluid viscosity dramatically affects the nature of
the singularity.

V. MAPPING OUT THE TRANSITION LOCATION

Having shown that the viscosity ratio does not affect the
scaling relations and similarity profiles, we turn to the ques-
tion of whether Su is affected by such a change in the param-
eters. In this section we compare the transition location for
seven fluid systems. The data from the experiments are pre-
sented in the next subsection. In Sec. V B, dimensional
analysis is used to deduce which dimensionless combinations
of the experiment parameters collapse the data for the tran-
sition curves. We then use the results of this dimensional
analysis to try and address which parameters set the length
scale for the cutoff curvatures �usat in Sec. V C. Finally, in
Sec. V D we present a crude but suggestive comparison of
these results with Lister’s [25] simulations of selective with-
drawal for zero-Reynolds-number flow.

A. Data show that the transition location is unaffected by �b

Figure 6 shows a plot of Su versus Q for seven pairs of
fluids. There are a few obvious trends. The three distinct
clusters of curves in Fig. 6 correspond to different values of
�a. For a given value of Q, a sixfold increase in �a, increases
Su by about a factor of two. Second, for a given value of Q,
even a 1000-fold increase in �b does not significantly affect
Su. These observations indicate that for the range of param-
eters studied, it is �a rather than the viscosity ratio that af-
fects the transition location within the S versus Q parameter
space. Finally, all of the data sets show that SuQ
 where 

ranges between 0.30 and 0.45. The values of 
 are listed in
Table I.

The remaining trends due to changes in �� and � are
weak. Furthermore, surfactants can shift the Su curves by an
amount comparable to the shifts seen in the curves forming
the uppermost cluster in Fig. 6. Therefore, either simulations
or more careful measurements of Su will be necessary to
resolve the roles of these parameters.

FIG. 6. Plots of the transition tube height Su as a function of Q
for the seven systems listed in Table I. For each system, it is ob-
served that SuQ
 with 
 ranging between 0.30 and 0.45. The Su

curves cluster into three groups corresponding to the different upper
fluids used in the experiments. Each cluster is labeled with the
corresponding upper fluid.
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B. Dimensional analysis leads to scaling of transition curves

In general, Su is a function of the parameters:
Q ,�a ,�b ,�a ,�b ,��g ,� ,D. However, in these experiments
neither D nor �b affect the value of Su. Therefore, the depen-
dence on these parameters, the viscosity ratio, and the vari-
ous aspect ratios containing D can be eliminated. According
to Buckingham’s Pi theorem, the remaining seven variables
must be functions of four dimensionless variables. Without a
theory it is difficult to determine which dimensionless com-
bination describes the flows. However, the fact that �a plays
a fundamental role in determining the transition location sug-
gests that the flows may be in the low Reynolds number
regime. Note that an assumption of low-Reynolds-number
flow would eliminate the variables �b and �a and reduce the
number of dimensionless variables to two.

To check the validity of such an assumption the Reynolds
number characterizing the different systems must be deter-
mined. There are a variety of ways in which the Reynolds
number for the flows in the hump state can be defined [37].
Here, the balance between the capillary stress, which acts to
smooth the interface, and the viscous stress, which deforms
the interface, is used to make the estimate [38].

At the hump tip the fluid velocity vanishes. The fluid ve-
locity in the absence of the interface Q / 
2��S−h�0�	2�, is
used to estimate the fluid velocity away from the hump tip
vbulk. The length d over which the velocity decreases to zero
can be estimated from the stress balance ��=�avbulk /d. The
dimensionless combination �avbulkd /�a is then used to esti-
mate the Reynolds number Re. For the data in Fig. 6, Re
�1	10−4 for the top cluster of curves, Re�3	10−2 for the
middle cluster of curves, and Re�4 for the lowest curve.

Having validated the assumption of low-Reynolds-
number flow for the majority of the data, we eliminate the
variables �b and �a. Dimensional analysis of the remaining
variables in this problem indicates that

Su/�c = f�Q�a

��c
2 � �3�

where f is a function to be determined and �c��� /��g. The
solid symbols in Fig. 7 depict the Su /�c versus �Q�a� / ���c

2�

curves for the systems with �a=9.7 P, �a=1.7 P, and �a
=0.48 P corresponding to systems 4, 6, and 7 in Table I. For
clarity, we only show one curve from each of the clusters in
Fig. 6. The curves for all the other systems fall between the
curves for systems 6 and 7. The data in Figs. 6 and 7 indicate
that the function f has the form of a power law with an
exponent 
 which varies between 0.30 and 0.45. It is note-
worthy that under this scaling, the experiment data sets col-
lapse onto each other to within a factor of two in
�Q�a� / ���c

2�.

C. Dimensional analysis predicts that the capillary length
determines �usat

In the 2D problem, �b plays a fundamental role in deter-
mining the curvature cutoff [17]. Table I shows that the
asymptotic value of �u for system 6 is 1.5 times larger than
the value of �usat for system 5. This weak trend is opposite
the one found in the 2D analog, and shows that changing �b
by over two orders of magnitude has virtually no effect on
the value of �usat. Since �u is independent of the flow rate at
large S, an increase in the capillary number
�aQ / ���D /2�2��a	 can also be ruled out as a method of
getting the system closer to the singularity.

The dimensional analysis presented in the previous sec-
tion can help determine which parameters set the value of
�usat. In the low-Reynolds-regime, �usat must have the form:

1

�usat�c
= p�Q�a

��c
2 � �4�

where p is a function to be determined. Using the observa-
tion that �usat is independent of the flow rate, this analysis
predicts that 1 /�usat�c. This result is surprising since (with
the exception of the system 7 data) �c is typically over an
order of magnitude larger than 1/�usat. Nevertheless, a com-
parison of �usat�c values for systems 1–6 (see Table I) indi-
cates that the values are within about one standard deviation
of the average �usat�c value for these six systems. System 7
shows a significantly smaller value of �usat�c. A comparison
of systems 7 and 5 shows that while �c is held constant, the
value of �usat changes by a factor of six. Shallow hump pro-
files are also observed for nearly inviscid systems, which use
air as the upper fluid and water as the lower fluid. For the
flow rates at which �usat for system 7 asymptotes, Re�1.
Therefore, it is possible that the value of �usat for system 7 is
measured at flow rates that are too large for the low-
Reynolds-number assumption to be valid. A low-Reynolds-
number simulation, which can vary �c by orders of magni-
tude, would allow for a more detailed study of the effect of
�c on �usat. The dependence of �usat on �c also means that the
final curvature should change as the local boundary condi-
tions are varied [30].

D. Comparison with results of zero-Reynolds-number
simulations

For completeness, we compare these experiment results
with Lister’s simulations of selective withdrawal for zero-
Reynolds-number flow [25]. These are the only currently

FIG. 7. Plot of the experimentally measured Su /�c versus
�Q�a� / ���c

2� curves along with the curve predicted by the simula-
tions of Lister [25]. The closed symbols depict the experimental
measurements for systems 4, 6, and 7 in Table I, while the open
symbols depict the range of �Q�a� / ���c

2� over which the simula-
tions are performed. The solid line represents a power-law fit to the
simulation results and has a slope of 0.30.
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available simulations where the viscous effects of the upper
fluid are taken into account. However, many aspects of this
comparison remain crude:

(i) The simulations are designed to model a system with a
point sink that is located many capillary lengths, �c, away
from the interface. While Su shows no dependence on the
tube diameter D, [see Fig. 3(a)], it is still comparable to the
capillary length. Thus, the experiments are performed at
much smaller values of Q and Su than the simulations mak-
ing it impossible to compare the results quantitatively. Nev-
ertheless, since it is expected that Su is a smooth function of
Q, one can check that the simulation and experiment data
sets are consistent with this expectation.

(ii) Lister’s simulations are performed for equal viscosity
fluids. However, the fact that in these experiments �b does
not affect the transition location can be used to compare the
simulations with the experiments for which the fluid viscosi-
ties are unequal.

(iii) In the simulation, a point sink is used to withdraw
the fluids. However, in the experiments, the tube can only
withdraw fluid from below the tube orifice. Therefore, the
simulation results will overestimate the flow rate at which
the transition occurs.

Clearly, more detailed simulations which address these
concerns would allow for a better comparison. With these
caveats in mind, we proceed with the comparison to Lister’s
zero-Reynolds-number simulation results.

Figure 7 overlays the simulation results onto the rescaled
transition data. The open symbols depict the range of
�Q�a� / ���c

2� over which the simulations are performed. The
simulations are conducted using dimensionless variables so
that the resulting prediction is independent of the particular
fluid parameters describing the different experimental sys-
tems. The solid line represents a power-law fit to the simu-
lation results. This fit is projected into the regime where the
measurements are taken in the experiments. As expected, the
fit to the simulation data overestimates the transition flow
rate. Note that a factor of two reduction in the simulation
flow rate is sufficient to shift the simulation prediction onto
the experiment results. However, it is not clear if a simple
reduction in the flow rate can fully account for the different
withdrawal geometries. Nevertheless, it is suggestive that the
curve predicted by the simulation has a value of 
=0.30,
which agrees with the values of 
 for systems 5–7.

Finally, even though under scaling, the data for the �a
=9.7 P system rests in between the scaled curves for systems
6 and 7, a discrepancy remains between the power-law ex-
ponent describing this system (0.45) and the numerical pre-
diction (0.30). It is unlikely that the effects of fluid inertia
can account for this variation. First, the fluids with the lower
viscosities follow the zero-Reynolds number prediction more
closely. If inertial stresses were playing a role, one would
expect the 
 values for the lower viscosity systems to deviate
from the prediction. Second, since a large change in Re can
also occur along the Su versus Q curves, one would expect
the effects of inertia to manifest as variations in the slope.
Such variations are not observed.

An alternative scenario, is that the high-extensional strain
rate causes up to a threefold increase in the upper fluid vis-
cosity as Q is increased. Such an effect could result from a

small population of high molecular weight PDMS chains
[31] in the upper fluid bath [32]. Since increasing �a causes
an upward shift in the Su versus Q curves, a viscosity that
increases with Q would result in a higher power law expo-
nent 
. Unfortunately, current state-of-the-art techniques are
not sensitive enough to measure such weak viscosity depen-
dencies in these relatively low viscosity fluids. Therefore, to
investigate such effects, it may be useful to measure how 

changes when a high molecular weight polymer is intro-
duced into the upper fluid bath.

VI. CONCLUSIONS

In this paper, it has been shown that the transition straw
height for a given flow rate Su changes as SuQ
, where 

ranges between about 0.45 and 0.30. Experiments comparing
Su for different systems of immiscible fluids with flows
reaching into the low-Reynolds-number regime have been
performed. The data indicate that for viscosity ratios less
than one, the upper fluid viscosity rather than the viscosity
ratio determines the value of Su. The scaling of the data
suggested by dimensional analysis in the low-Reynolds-
number regime shows that to within a factor of two in
�Q�a� / ���c

2�, the transition data can be collapsed onto a uni-
versal curve (Fig. 7). This curve is slightly shifted from the
curve predicted by the simulations of Lister for zero-
Reynolds-number flows with a point sink. However, a factor
of two reduction in the simulation flow rate seems to account
for this shift. While this comparison is not conclusive, it is
suggestive and indicates that a theory tailored to address the
concerns outlined in Sec. V D may be able to more accu-
rately account for the observed dependencies.

For low flow rates, where the withdrawal tube is suffi-
ciently close to the interface, the transition is hysteretic. Co-
hen and Nagel have correlated the decrease in the hysteresis
for transitions taking place at higher S with the decrease in
the final mean radius of curvature 1/�u. Here, it has been
shown that the tube diameter, at low S, sets a length scale for
1 /�u. As S is increased, 1 /�u decreases and eventually satu-
rates to 1/�usat implying that the residual discontinuity in the
transition depends on the fluid parameters rather than the
experiment geometry. As Table I shows, the value of �usat
does not depend on �b for the range of viscosities investi-
gated. It is in the asymptotic regime where 1/�u has reached
its asymptote 1/�usat that the scaling behavior and similarity
profiles are investigated.

We have performed a detailed comparison of the scaling
relations for systems 5 and 6 that have the same upper fluid
viscosity but have a lower fluid viscosity, which is different
by a factor of 300. It is observed that up until the cutoff, the
hump profiles behave as though they are approaching a sin-
gular solution where, at a critical flow rate, the hump height
would be equal to hc and the mean curvature � would di-
verge. The quantity �hc−hmax� /hmax has been shown to scale
as �� /n�� where �=−0.85±0.09 and �=−0.86±0.10 for the
high and low �b systems, respectively. These scaling rela-
tions are used to collapse the hump profiles for different flow
rates and straw heights near the transition onto a series of
similarity curves. The region of the similarity profiles located
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beyond the parabolic tip can be fit with a power law that has
an exponent x=0.72±0.10 and x=0.72±0.08 for the curves
in systems 5 and 6, respectively. The results show that for the
range of viscosities investigated, both the scaling exponents
and the shape of the similarity solution are independent of �b
and the viscosity ratio. In fact, a direct comparison of the
similarity solution for both fluid systems indicates that,
within error, the curves are identical. The lack of �b depen-
dence for the Su versus Q curves �usat the similarity profiles
n, and the scaling exponents x and � indicates that the selec-
tive withdrawal problem is very different from its 2D analog.

The similarity treatment for the hump profiles is localized
to the hump tip, which is over an order of magnitude smaller
than �c. This separation of length scales between the hump
radius of curvature and the boundary conditions is a typical
requirement for a successful similarity treatment. If �usat
does indeed depend on �c, then the matching region, which
connects the profile near the tip of the hump to the flat inter-
face at large radii, may be responsible for setting the length
scale for the cutoff. Such an effect could also explain the
slight difference between the observed value of the power-
law exponent describing the similarity solution �x� and the
value predicted by the scaling relations ���. Control over the
cutoff curvature is crucial for obtaining more accurate scal-
ings. Moreover, this control could be used to adjust the mini-
mum spout diameter and advance emerging technologies,
such as coating microparticles [13], creating monodispersed
microspheres [33], and emulsification through tip streaming
[6,34], which take advantage of a selective withdrawal ge-
ometry. The importance of identifying which parameters de-
termine the length scale for the cutoff warrants a more care-
ful investigation of the kusat dependence on �c and the local
interfacial boundary conditions.

Finally, the robustness of the similarity solution shows
that singularities can be used to organize the study and clas-
sification of the steady-state hump profiles near the selective
withdrawal transition. In particular, the discontinuous nature
of the transition, marked by the cutoff curvature �u, coupled
with the display of scaling behavior suggests a transition
structure that is remarkably similar to that of weakly first-
order thermodynamic transitions. Whether this analogy hints
at some deeper relationship between the classification
schemes for weakly first-order thermodynamic transitions
and the classification schemes for these types of topological
transitions remains to be shown.
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APPENDIX: SURFACTANT EFFECTS

Surfactants can significantly affect interfacial tension and
surface flows. In the present studies there are two effects that
result from the presence of surfactants. First, measurements
taken after the surfactant concentration at the interface is
allowed to equilibrate for a period of a week show a uniform
20% increase in Su, or, equivalently, a 50% decrease in the
transition flow rate. Upon cleaning the interface once again,
the Su data points return to their original value. The observed
shift in Su resulting from the differing surfactant concentra-
tion is quite small compared with the shift observed when �a
is increased by a factor of five. Nevertheless, the fact that the
transition flow rate can change by nearly 50% depending on
the surfactant concentration is noteworthy.

The second noticeable effect due to surfactants is the os-
cillations between the hump and spout states occurring near
the transition over periods as short as one minute. Note that
the time scale for this effect is still much larger than the time
scale for pump-induced noise in the withdrawal rate, which
can produce similar effects near the transition. While the
increase in the Su values is most likely due to a uniform
reduction in � over the entire interface, the dynamic nature
of the observed hump to spout oscillations implies that the
flows may cause local variations in the surfactant concentra-
tion. In this picture, when the system is in the hump state,
surfactants are dragged toward the hump tip by the surface
flows. If the system is sufficiently close to the transition, this
accumulation, which lowers the surface tension locally,
causes the hump to increase its height and curvature and
ultimately drives the system into the spout state. Once in the

FIG. 8. Plots of the time dependence for hmax (squares) and �
(open circles) just after spout collapse for system 3. The figures
correspond to measurements taken at constant S but at different Qs.
In both figures, t0 corresponds to the time at which the spout col-
lapses into a hump. (a) shows measurements for a system close to
the transition with �Qc−Q� /Q�0.004. (b) shows measurements for
a system slightly farther away from the transition with �Qc−Q� /Q
�0.01.
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spout state, the local surfactant concentration reduces over
time and the system eventually decays back into the hump
state. This picture is motivated by the observations of de
Bruijn [35] for tip streaming of drops under shear flow.
While the local boundary conditions for these two problems
are different, the flow patterns are remarkably similar indi-
cating that the oscillatory behavior observed in both systems
may be correlated.

Since many of the measurements discussed in the paper
are performed in the vicinity of the transition, care must be
taken when measuring the hump height and curvature. In
order to understand how hmax and � change with time, the
following experiment is performed. First, the system is
placed in the hump state. Then, the flow rate is increased
momentarily so that the interface forms a spout for a short
period of time. Just after spout collapse, the time dependence
of the hump curvature and height is measured. Figures 8(a)
and 8(b) show the results of measurements performed for the
same system, with the same value of S, but at different val-
ues of Q. The initial decay, which occurs over a time scale of
about 5 s, gives some measure of the relaxation time for the
flows in these systems. Following this initial decay, the
height and curvature values plateau. These plateaus are asso-

ciated with a regime where the local surfactant concentration
is too low to affect the shape of the interface. When the
system is near the transition so that �Qc−Q� /Q�0.004, the
plateau regime lasts about 15 s and is followed by a regime
in which both the height and curvature increase their values
[Fig. 8(a)]. However, as shown by Fig. 8(b), when the ex-
periments are performed at �Qc−Q� /Q�0.01, the plateau
regime lasts for over 20 min. When collecting data for the
scaling relations, it is important to determine the value of the
hump height and mean curvature in the plateau regime. Also,
a larger amount of error must be assigned to data points
taken from plateau regimes that are short lived. Note, how-
ever, that since the plateau regime lengthens quite rapidly as
�Qc−Q� /Q is increased, for the cleaned interface, these pre-
cautions only apply to the one or two data points in the
scaling relations, which are closest to the transition. For the
equilibrated systems, the plateau regimes are shorter and
greater caution must be taken in making the measurements.
Comparisons between the �hc−hmax� /hmax versus � /n curves
for equilibrated systems and clean systems indicate that
when these precautions are taken there is no change in the
scaling curves.
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