
This number is one-seventh of the value

reported in (1) as the upper limit of viscos-

ity of superfluid helium. For comparison,

the viscosity of normal fluid 4He is 2 �
10j6 PaIs. This calculation invalidates this

soft shear mode interpretation and supports

the superflow interpretation.

The smooth decay in D
s
/D with increasing

temperature near 250 mK makes it difficult

to determine with precision the supersolid

transition temperature T
c
. We estimate the

value of T
c
by assuming a linear dependence

of D
s
/D on temperature near T

c
and then use

the data with D
s
/D between 0.01 and 0.1 to fit

for T
c
. The resultant transition temperatures,

with uncertainty of 20 mK, are likely to be

lower than the Btrue[ values. The transition

temperatures we have found show a weak

pressure dependence decreasing from 315

mK at 26 bars down to 230 mK at pressures

exceeding 40 bars. The phase diagram of
4He, including both the superfluid and

supersolid phases, is shown in Fig. 4.

A number of experiments have searched

for the supersolid phase in bulk solid helium

without success (27). A recent experiment

found an unexpected interaction between

acoustic and heat pulses in solid 4He with

several tens of parts per million of 3He (28).

The result led to the interpretation of a Bose

condensate of thermally activated vacancies

at temperatures above 200 mK and therefore

is not related to the findings reported here. A

prior torsional oscillator experiment (29)

reported the absence of any supersolid

decoupling in a solid 4He sample that

contains 411 parts per million of 3He—a

concentration, as we found in the Vycor

experiment (15), sufficient to quench the

supersolid phase. The authors of this prior

experiment also reported that they failed to

find evidence of the supersolid phase in

samples of high-purity 4He (29). Our results

disagree with this conclusion. Other experi-

ments involve the search of motion of a fall-

ing dense object in solid helium or flow of

solid helium from one chamber of higher

pressure to one of lower pressure (30–34). A

likely explanation of why these experiments

found null results is that such pressure-

driven mass flow requires a difference in

the supersolid fraction between regions or

chambers of different pressures. Our mea-

surements showed that the supersolid frac-

tion is insensitive to the pressure of the solid
4He samples.

We noted above that Bose-Einstein

condensation is found together with super-

fluidity in bulk liquid helium and in alkali

gases. In contrast, superfluidity at T 9 0 is

found in two-dimensional liquid helium

films without Bose-Einstein condensation

(18). An intriguing question is whether the

supersolid phase is associated with Bose-

Einstein condensation.
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Visualization of Dislocation
Dynamics in Colloidal Crystals

Peter Schall,1* Itai Cohen,1,2 David A. Weitz,1,2 Frans Spaepen1

The dominant mechanism for creating large irreversible strain in atomic crys-
tals is the motion of dislocations, a class of line defects in the crystalline lattice.
Here we show that the motion of dislocations can also be observed in strained
colloidal crystals, allowing detailed investigation of their topology and
propagation. We describe a laser diffraction microscopy setup used to study
the growth and structure of misfit dislocations in colloidal crystalline films.
Complementary microscopic information at the single-particle level is obtained
with a laser scanning confocal microscope. The combination of these two
techniques enables us to study dislocations over a range of length scales,
allowing us to determine important parameters of misfit dislocations such as
critical film thickness, dislocation density, Burgers vector, and lattice resistance
to dislocation motion. We identify the observed dislocations as Shockley par-
tials that bound stacking faults of vanishing energy. Remarkably, we find that
even on the scale of a few lattice vectors, the dislocation behavior is well
described by the continuum approach commonly used to describe dislocations
in atomic crystals.

Dislocations in a crystalline lattice are cen-

tral to our understanding of yield, work hard-

ening, fracture, fatigue, and time-dependent

elasticity in atomic crystals (1). Such dis-

locations are line defects that mark the

boundary of a surface at which one part of

the crystal has been uniformly translated

with respect to the other (2–4). A complete

understanding of dislocations and their

dynamics requires an analysis that bridges a

range of length scales (5). On the atomic

scale, the interatomic potential determines the

structure of the dislocation core. On the

medium-range scale, the strain field of the

dislocations determines their interactions. On

the macroscopic scale, the behavior of the

dislocations determines the deformation of

the crystal. It is difficult to observe dis-

1Division of Engineering and Applied Sciences,
2Department of Physics, Harvard University, 9 Oxford
Street, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed.
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locations simultaneously on these length

scales. Transmission electron microscopy

(TEM) is best suited for in situ observations

on the medium-range scale. Computer sim-

ulations can bridge the length scales, but the

size of their systems and length of the

evolution time remain limited. Thus, there

remains a need for techniques that link

investigations of dislocations on these differ-

ent length scales.

We show that colloidal crystals offer a

unique opportunity for just such a bridging

of length scales. Because colloidal particles

are several orders of magnitude larger than

atoms, they can be studied in real time and

their positions in three dimensions can be

determined accurately by confocal micros-

copy (6). Concentrated hard-sphere colloidal

suspensions form crystals to increase their

entropy, thereby lowering their free energy.

Such crystals have a finite stiffness (7), which

is essential for the existence of dislocations.

To study these dislocations on the medium

scale, we developed a laser diffraction micros-

copy (LDM) technique that images the strain

field in a manner analogous to TEM in atomic

systems. Confocal microscopy and LDM

make a powerful combination for studying

dislocation dynamics simultaneously over two

qualitatively different length scales.

We focus on misfit dislocations formed

when a film is grown via particle sedimenta-

tion on a substrate with a different lattice

parameter. This configuration allows us to in-

troduce the dislocations in a controlled way

and to study nucleation and propagation of

dislocations (8) during a process analogous to

the industrially important epitaxial growth of

thin atomic crystalline films. In thin epitaxial

films, the misfit strain (
0
is accommodated

purely elastically and results in a uniform

strain (
el
. The total elastic energy increases

linearly with the film thickness. At some

critical thickness h
c
, the crystal can lower its

energy by incorporating dislocations that re-

lieve some of the elastic strain. As the film

thickness increases, an increasing portion of

the misfit strain is accommodated.

We determine the important parameters of

the dislocation array: number per length,

Burgers vector, position and range of the strain

field, and mobility. We find that many of these

features can be accounted for by the continuum

theory used for epitaxial growth of atomic thin

films. Some features, however, are unique to

colloidal crystals, such as the negligibly small

stacking fault energy and the slight variation of

the lattice parameter with height (due to the

pressure head of the upper layers).

We grow colloidal face-centered cubic

(fcc) single crystals by slowly sedimenting

colloidal particles onto a patterned template

(9). We use silica particles with a diameter of

1.55 6m and a polydispersity of less than

3.5% (10). We prepare a pattern (11) with

lattice constant d
0
0 1.63 6m that nearly

matches the equilibrium interparticle separa-

tion for colloidal crystals that are about 30 6m

thick. This preferred lattice spacing changes

slightly with film thickness as a result of the

difference in the pressure head (12).

We add 3.5 ml of the dilute suspension,

which after sedimentation gives rise to about

11 crystalline layers corresponding to a film

13 6m thick. After several days, we remove

two-thirds of the supernatant and replace it with

another dose of the dilute silica suspension.

Using this procedure, we grow the crystal by

9-6m increments until the film is 31 6m thick.

We image dislocations in the crystalline

films with a simple LDM setup that is

inspired by the TEM techniques used to

investigate dislocations in atomic systems

(13). We use a HeNe laser with a wavelength

of 632 nm, which scatters coherently from

the colloidal crystal. When the incident beam

is perpendicular to the template, a symmetric

fcc (100) diffraction pattern is observed. By

slightly tilting the sample to change the

direction of the incident beam, we maximize

the intensity in the (220) diffracted spot. We

then use two lenses to project the light in the

diffracted beam onto a screen (Fig. 1A). The

image on the screen corresponds to a region

in the crystal that is illuminated by the in-

cident beam. A perfect crystal shows a

uniformly bright image. When the crystal

contains dislocations, however, dark lines

appear in the image: The bending of lattice

Fig. 1. Laser diffraction
microscopy (LDM) tech-
nique and images. (A)
Schematic of the LDM
instrument: A laser beam
is sent through a colloidal
crystal. One of the dif-
fracted beams is imaged
on a screen by means of
an objective and a projec-
tor lens. (B and C) LDM
images of the colloidal
crystal grown on the tem-
plate with the ideal lattice
constant d0 0 1.63 6m.
Arrows indicate disloca-
tions. The upper left inset
shows the diffraction pat-
tern from the crystalline
film; 0 indicates the trans-
mitted beam, and an
arrow indicates the dif-
fracted beam used for
imaging. The upper right
inset illustrates the wave
vectors of the incident and
diffracted beams k0 and k,
the diffraction vector q 0
k – k0, and the cor-
responding reciprocal lat-
tice vector g. In (B) the
diffraction vector q coin-
cides with the reciprocal
lattice vector g and the
diffracted beam intensity
is maximum. In (C), the
sample is tilted, so that q
differs from g by the
excitation error s 0 q – g,
which gives rise to an
inversion of the image
contrast. (D to G) LDM
images of a colloidal crys-
talline film grown on a
stretched template with
lattice constant d1 0 1.65
6m. (D) and (E) show that
using the (220) diffraction
vector, which lies along
the y direction, gives
images of dislocations ori-
ented in the x direction.
(F) and (G) show that
choosing the (220) diffrac-
tion vector, which lies along the x direction, images dislocations oriented in the y direction.
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planes in the strain field of the dislocation

gives rise to a local change in the Bragg

condition and results in a dark line in the

image of the diffracted beam. A LDM image

of a 0.3 mm by 0.3 mm section of the

colloidal crystal grown on the template with

the ideal lattice constant d
0
0 1.63 6m is

shown in Fig. 1B. Even these crystals, grown

on templates with an ideal lattice constant,

contain some dislocations (indicated by

arrows). Such dislocations are most fre-

quently observed near the template border.

We can further exploit the analogy with

the TEM technique and use contrast inversion

to verify that the dark lines in Fig. 1B indeed

result from scattering due to the dislocations.

When the sample is tilted slightly further, the

Bragg condition is no longer fulfilled in the

perfect lattice and is instead locally satisfied

in the region corresponding to the dislocation

strain field. Thus, the image contrast on the

screen inverts (Fig. 1C). The additional tilt

of the sample introduces an excitation error,

s 0 q – g (Fig. 1C, upper right inset), which

causes the intensity in the diffracted beam to

decrease (Fig. 1C, upper left inset). Close to

the dislocation, however, the bending of

lattice planes locally scatters light into the

direction of the diffracted beam, making the

dark lines appear light.

To investigate the effect of a lattice mis-

match, we grew a crystal on a template with

lattice constant d
1
0 1.65 6m, which is 1.5%

larger than d
0
. The crystal grown on the

stretched template exhibited a similarly low

density of dislocations at a crystal thickness

of 22 6m. Strikingly, as the crystal was

grown to a thickness of 31 6m, a large

number of dislocations nucleated and grew

(Fig. 1, D and E). We determined the average

dislocation line separation in the direction

perpendicular to the dislocation lines, 3,

from the images. 3j1 is the number of

dislocations per unit length. Measuring 3 in

three different 0.3 mm by 0.3 mm regions,

we obtained an average value of 53 (T10) 6m
for the 31-6m crystal.

Remarkably, although the template was

stretched in both spatial directions, dislocation

lines were seen in one direction only (Fig. 1, D

and E). The dislocation contrast is visible only

if the particle displacements in the dislocation

strain field have a component parallel to the

diffraction vector used for imaging. The (220)

diffraction vector chosen for imaging in Fig.

1, B to E, lies along the y direction; therefore,

only lattice distortions with a component

along the y direction showed up in the image.

When we instead chose the (220) diffraction

vector, which lies along the x direction, we

observed a second set of dislocations (Fig. 1,

F and G). Comparing the images in Fig. 1, D

and F, we conclude that the strain field of the

dislocations is strictly perpendicular to the

imaged dislocation lines.

To elucidate the defect structure on the

microscopic scale, we used confocal micros-

copy to image the individual particles and to

determine their positions (6 ). The 31-6m-thick

fcc colloidal crystal grown on the stretched

template contains characteristic defects. At

these defects, the nearest neighbor particle

configuration changes so that particles have

three opposing nearest neighbor pairs, as is

the case in the hexagonal close-packed (hcp)

lattice, rather than six as in the fcc lattice. A

reconstruction of a 55 6m by 55 6m by 17 6m

section of the crystal is shown in Fig. 2A. The

x, y, and z axes correspond to the (110), (110),

and (001) directions of the fcc lattice,

respectively. Particles with three opposing

nearest neighbor pairs are shown in red, and

those with six opposing nearest neighbor pairs

in blue. The red particles lie along intersecting

planes embedded in the fcc lattice. By display-

ing only the red particles, we show that the

planes are hcp (Fig. 2B). The red planes

sandwich a stacking fault where the stacking

order of the hcp planes changes from ABC-

ABCABC to ABCBCABCA. The stacking fault

lies along the (111) plane where the disloca-

tions move most easily as a result of the

shallow potential wells. This defines the glide

plane of the dislocations in the fcc structure.

For a closer look at the strain field asso-

ciated with the stacking faults, we display a

typical y-z cut through a stacking fault. The

fault ends above the template and is termi-

nated by a dislocation (Fig. 2C). The first

row of particles sits in the template holes. In

the second row of particles, we recognize the

emergence of a strain field in the y-z plane

associated with a dislocation line oriented

perpendicular to this plane. The dislocation

core (±) lies about two lattice constants

above the template. The Burgers circuit

illustrated by the red line, which would close

in the perfect lattice, exhibits a closure fail-

ure around the dislocation core. The Burgers

vector b, which connects the starting and

ending points of the Burgers circuit, is

1/6(112). This type of dislocation is known

as a Shockley partial dislocation and is the

most prominent dislocation observed in fcc

Fig. 2. (A) Reconstruction of a 55
6m by 55 6m by 17 6m section of
the colloidal crystal grown on the
stretched template. The red par-
ticles delineate stacking faults em-
bedded in an otherwise perfect fcc
lattice. (B) Crystal reconstruction
showing only the particles adja-
cent to the stacking faults. (C) A
reconstructed y-z section through
a stacking fault. The stacking fault
is terminated by a Shockley partial
dislocation whose core position is
indicated by ±. The red loop in-
dicates a Burgers circuit. The upper
right inset is a three-dimensional
illustration of the fcc unit cell. The
y-z plane is gray; the hcp plane
parallel to the stacking fault is red.
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metals (14). In metals, Shockley partial dis-

locations usually appear in pairs, held to-

gether by a stacking fault of nonzero energy.

In contrast, in the hard-sphere colloidal crys-

tal, the stacking faults extend to the crystal

surface. This difference results from the

vanishingly low energy cost associated with

stacking faults in hard-sphere crystals (15),

where second nearest neighbor interactions

are almost negligible.

To calculate the critical film thickness h
c
,

where the crystal starts to nucleate disloca-

tions in order to relieve some of the elastic

strain, we consider the crystalline film to be

an isotropic, linear elastic medium with Young

modulus E, shear modulus 6, and Poisson

ratio 8. The widely used one-dimensional

dislocation models for misfit dislocations in

atomic thin films (16, 17) give h
c
0 6b ln(R/r

c
)/

E4>E(
0
(1 – 8) cos "^, where r

c
and R are the

core and outer radii of the dislocation strain

field, respectively (18), (
0
is the misfit strain

imposed by the template, and " is the angle

between the Burgers vector and its projec-

tion onto the template. We take r
c
to be b/4

(1, 19), R to be the film thickness (17), and (
0

to be 0.015. Because E/6 0 2(1 þ 8) for an

isotropic elastic medium (1) and the Poisson

ratio can be set at 8 0 1/3 (7), we find h
c
0

22 6m. Consistent with this prediction, at a

thickness of 22 6m the colloidal crystalline

film is still free of dislocations. However, as

the film thickness is increased to 31 6m, the

film develops a large number of dislocations

(Fig. 1, D to G), again consistent with the

model. The misfit strain associated with the

dislocations is ( 0 b cos "/3. Using b 0 0.94

6m, cos " 0 1=
ffiffiffi

3
p

, and 3 0 53 6m, we find

( 0 0.010, which corresponds to two-thirds

of the total misfit strain (
0
0 0.015 (20).

A further test of the continuum model is to

calculate the height at which the dislocations

rest above the template. A dislocation is driven

toward the template by the force F
el
0 ½3E(

0
2,

which results from the elastic stress in the

layers below the dislocation core, which are

still strained (21). The boundary condition, set

by the requirement that the particles in the

first layer must adopt the template spacing,

gives rise to an image force that repels the

dislocation away from the template. The

image force acting on a dislocation whose

Burgers vector b¶ is parallel to the template

and whose core rests at a distance z above the

template is F
i
0 6b¶2/E4>(1 – 8)z^ (1). We

estimate this force for our system by neglect-

ing the vertical component of the Burgers

vector and taking b¶ 0 b cos ". The image

force balances the elastic force when the

dislocation rests at a distance z
0
0 6(b cos ")2/

E2>3E(1 – 8)(
0
2^ from the template. Using

3 0 53 6m, b 0 0.94, cos " 0 1=
ffiffiffi

3
p

, and (
0
0

0.015, we find z
0
0 2.1 6m, in good agree-

ment with our observation of z
0
0 3 6m.

Thus, surprisingly, the predictions of con-

tinuum theory, which are typically applied

on length scales above 100 lattice constants,

hold even for a very small number of layers.

We also used LDM to study the dis-

location dynamics during the epitaxial

growth of the film. We started with a crystal

22 6m thick, added a final dose of particles,

waited 14 hours, and then tracked the

evolution of dislocations over a period of

2.5 hours (movie S1). Three snapshots from

the movie are shown in Fig. 3, A to C. The

images show the spreading of existing

dislocations and the nucleation and growth

of new ones. Figure 4A shows the disloca-

tion length as a function of time for the four

dislocations indicated in Fig. 3C. Initially,

the dislocations grow rapidly, at a rate of

about 1 6m sj1. As the dislocation length

increases, however, the growth rate de-

creases and eventually falls to zero.

To quantitatively analyze this spreading

behavior, it is necessary to account for the

forces acting on a dislocation. A diagram de-

picting a typical dislocation line in our thin

film is shown in Fig. 4B. The dislocation

consists of an edge segment that runs parallel

to the template and joins two screw segments

that terminate at the crystal surface. The edge

dislocation expands through the lateral

motion of the screw segments (22). Figure

4B also depicts the forces acting on one of

the screw segments. The expansion of a

dislocation is driven by the Peach-Koehler

force F
PK

due to the elastic stress (22) and is

resisted by the dislocation line tension F
l
(1)

and a drag force F
d
associated with moving

the screw segment through the crystal. For

colloidal crystals, F
d
has been shown to be

t = t0+260 min

t = t0

100 µm

t= t0+16 min

22
33

11 44

A

B

C

Fig. 3. (A to C) Snapshots from an LDM movie
(movie S1) taken during the epitaxial growth of
a colloidal crystal film grown on the stretched
template. The time t0 corresponds to 14 hours
after adding a final dose of particles. The dots
in (C) mark four dislocations whose growth is
tracked and displayed in Fig. 4.
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Fig. 4. (A) Length versus time for the four
dislocations marked in Fig. 3C. (B) Sche-
matic diagram of a dislocation line that lies
in a hcp plane shown in red. The disloca-
tion edge segment runs parallel to the
template and joins two screw segments
that terminate at the crystal surface. The
forces acting on the dislocation line are
marked. (C) The symbols indicate the
rescaled dislocation length L/Linf versus
rescaled time t/I for the four growth
curves marked in (A). The solid line is the
theoretical prediction of the model and has
the functional form [1 – exp(t/I)].
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the dominant force associated with the mo-

tion of such screw dislocations (19). At the

onset of dislocation growth, we estimated the

magnitude of each of the forces to be on the

order of 100 fN. The length of a dislocation

as a function of time can be calculated from

the force balance, F
PK

0 F
l
þ F

d
(23). As the

dislocation grows and accommodates an

increasing portion of the misfit strain, the

elastic force driving the expansion decreases.

Thus, the force balance predicts that L 0
L
inf
E1 – exp(–t/I)^, where L

inf
is the final

dislocation length and I is a constant, pro-

portional to the ratio of the viscosity of the

solvent to the elastic modulus.

To test this prediction, we scaled the

entire data set and plotted L/L
inf

versus t/I

(Fig. 4C). The data are in excellent agree-

ment with the theoretical prediction. As a final

check, we used the average value of I, which

we determined to be 130 (T40) s, to estimate

the elastic modulus of the colloidal crystal

(23). This estimate yields a value of 0.3 Pa,

in reasonable agreement with theoretical

estimates that predict a value on the order

of 1 Pa (7). This is one of the only techniques

available for directly determining the elastic

modulus of thin colloidal crystal films.

The combination of imaging techniques

presented and the close similarity of disloca-

tions in colloidal and atomic crystals lays the

groundwork for investigating further impor-

tant phenomena that cannot be directly studied

on the atomic scale, such as the nucleation and

interaction of dislocations in very constrained

systems. The remarkable and unexpected

correspondence between continuum model

predictions and the phenomena we observe

on the scale of just a few lattice constants

suggests that continuum models may also be

applied to describe dislocation behavior even

in highly constrained structures, such as those

being made as nanoscale science pushes to

ever smaller devices. Finally, the effects of the

vanishing stacking fault energy and the

pressure head on dislocations in colloidal

crystals highlight some of the unique features

of this class of condensed matter.
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Ice Flow Direction Change in
Interior West Antarctica
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Upstream of Byrd Station (West Antarctica), ice-penetrating radar data reveal
a distinctive fold structure within the ice, in which isochronous layers are
unusually deep. The fold has an axis more than 50 kilometers long, which is
aligned up to 45- to the ice flow direction. Although explanations for the
fold’s formation under the present flow are problematic, it can be explained if
flow was parallel to the fold axis È1500 years ago. This flow change may be
associated with ice stream alterations nearer the margin. If this is true, central
West Antarctica may respond to future alterations more than previously
thought.

Ice-penetrating radar provides information

on ice thickness, subglacial morphology, and

internal layering, caused by electromagnetic-

wave reflections from dielectric contrasts

(such as high-acidity horizons formed from

the aerosol product of volcanic events

contained within ancient snow). Internal

layers are believed to be isochronous, as
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