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Designing flat sheets that can be made to deform into three-dimensional shapes is an area of intense
research with applications in micromachines, soft robotics, and medical implants. Thus far, such sheets
were designed to adopt a single target shape. Here, we show that through anisotropic deformation applied
inhomogeneously throughout a sheet, it is possible to design a single sheet that can deform into multiple
surface geometries upon different actuations. The key to our approach is development of an analytical
method for solving this multivalued inverse problem. Such sheets open the door to fabricating machines
that can perform complex tasks through cyclic transitions between multiple shapes. As a proof of concept,
we design a simple swimmer capable of moving through a fluid at low Reynolds numbers.
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Designing shape shifting sheets is of enormous interest
in fields including micromachines [1], soft robotics [2,3],
and medical implants [4] where fabrication and production
constraints often require an initial flat configuration.
Programming a single shape transformation in such sheets
already enables designs for switches, deployable structures
[5], and actuators [6]. Designing sheets that can adopt
multiple target geometries would open the door to more
sophisticated machines that can cycle through multiple
states, perform work on their surroundings, and locomote
through viscous fluids [7,8].
In origami, it is possible to program more than one shape

into a single sheet [9–11]. However, the shapes are almost
always incompatible, which means that the sheet must
return to the flat configuration before it is folded into
another shape. Elastic sheets can fold from one shape to
another directly [12]. Here, we show how to inverse design
a sheet so that it can transform into a series of shapes in an
arbitrary sequence in response to actuation signals. By
transforming from one shape to another directly, without
returning to its original flat configuration, such sheets are
able to perform complex tasks and do work on their
environment. The challenge in designing such pluripotent
sheets, however, is that one must simultaneously control
multiple independent degrees of freedom, such as the
deformation magnitude and orientation, to obtain multiple
independent shapes (Fig. 1).
Most shape shifting sheets have been designed to deform

into a single target geometry via one of two deformation
modalities where only one deformation degree of freedom
is varied [13]: (i) inhomogeneous isotropic deformations
[14,15], where the deformation magnitude varies through-
out the sheet [16–19]; and (ii) homogeneous anisotropic
deformations [20], where the deformation principal axis
varies throughout the sheet [2,21–34]. Both modalities can

be used to alter a sheet’s local Gaussian curvature and
determine its geometry. Importantly, the technology to
simultaneously implement both modalities to achieve multi-
ple shapes already exists [17,35]. Missing, however, is a
mathematical framework to generate designs that implement
both degrees of freedom to obtain the desired surfaces.
Naive combinations of the inverse design methods of

homogeneous and anisotropic systems [14,15,20] generally
fail at this task. The naive approach fails because the local
Gaussian curvature of an actuated sheet is nonlinearly
dependent on both degrees of freedom. The curvature is,
however, linear in the highest order derivatives of the
deformation degrees of freedom. Therefore, it may be
possible to rephrase the inverse design problem as a system
of partial differential equations (PDEs) in the deformation
degrees of freedom, where the actuated sheet’s curvatures
equal those of the target surfaces, and use linearity to
simultaneously solve the equations.
Implementing this strategy requires formulating a

common description of the initial and target surfaces in
terms of a shared coordinate system. A sheet’s deformation
is characterized by its principal axis with respect to the initial
sheet, denoted by a director n̂, and the deformation magni-
tudes along and across the director of λ1 and λ2, respectively.
Generally, λ1, λ2, and n̂ can all depend on external time
dependent actuation stimuli ΛðtÞ that drive the deformation.
Most known anisotropically deforming systems, however,
are uniaxial: their deformation’s principal axis n̂ is inde-
pendent of the actuation Λ [2,21–34,36]. In such materials,
the integral curves of the principal axis n̂ and its
perpendicular n̂⊥ form a “material” coordinate system
ðu; vÞ on the sheet throughout the deformation such that

∂urΛ ¼ αλ1n̂Λ; ∂vrΛ ¼ βλ2n̂Λ⊥; ð1Þ
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where rΛ are the coordinates of the sheet for an actuation Λ,
α and β are the arc lengths of u and v parametric curves on
the initial sheet, and n̂Λ are the images of the director n̂ on
the deformed surfaces (Fig. 2). The deformation magnitudes
are also functions of designable features ϵðu; vÞ specified on
the undeformed sheet. Thus, the sheet’s geometries through-
out the deformation are given by the metrics

ds2ðΛÞ ¼ λ21ðΛ; ϵÞα2du2 þ λ22ðΛ; ϵÞβ2dv2: ð2Þ

This shared coordinate system can then be used to define
the Gaussian curvatures of multiple actuated surfaces
simultaneously.
An actuated sheet’s Gaussian curvature is a function of

the deformation degrees of freedom expressed in the metric
[Eq. (2)] and its derivatives. For a surface with orthogonal
coordinates defined by Eq. (1), the Gaussian curvature is
given by [37]

K ¼ n̂⊥ ·∇κgu − n̂ · ∇κgv − κ2gu − κ2gv:

where κgu and κgv are geodesic curvatures of u and v
parametric curves, which are themselves PDEs in the
designable director:

κgun̂⊥ ¼ n̂ · ∇n̂; κgvn̂⊥ ¼ n̂⊥ · ∇n̂; ð3Þ

Keeping in mind that we would eventually like to design
the sheet properties, we express the geodesic curvatures,
κgu and κgv, as functions of the designable elastic features ϵ,
as well as α and β, which uniquely determine the design-
able director n̂ [37] [see Supplemental Material (SM) for
derivation [38]]:

κgu ¼
b
λ2

−
∂λ1
λ1∂ϵ

q
λ2

; κgv ¼
s
λ1

þ ∂λ2
λ2∂ϵ

p
λ1

;

b ¼ −
∂vα

αβ
; s ¼ ∂uβ

αβ
; p ¼ ∂uϵ

α
and q ¼ ∂vϵ

β
:

ð4Þ

Derivatives along and across the director are expressed
with respect to u and v: n̂ · ∇ ¼ ð1=λ1αÞ∂u and n̂⊥ · ∇ ¼
ð1=λ2βÞ∂v. Using Eq. (4), we can thus express the Gaussian
curvature as a quasilinear first order equation inb, s,p, andq:

FIG. 2. Inverse design scheme of a flat uniaxial sheet with a
designable elastic response [λ1ðϵÞ ≠ const� for two target surfaces
with Gaussian curvaturesK1 andK2 in response to stimuliΛ1 and
Λ2. ðu; vÞ coordinates given by integral curves of deformation’s
anisotropy axis n̂ or n̂⊥ are shared by all surfaces and allow
derivation of a system of equations describing the inverse
problem. Numerical integration of this inverse problem is
given by iteration of the following integration steps: Bottom
left, given complete data on a director integral curve, u data ¼
ðrΛ; n̂Λ; α; b; ϵ; qÞ is propagated a step dv along the director
perpendicular, forming a new director integral curve. Top,
curvature of target surfaces along new director integral curve
is obtained. Bottom right, initial data for β and s, given on initial
director-perpendicular curve, are integrated along new director
integral curve to complete the data on it.

FIG. 1. Inverse design of pluripotent sheets. Left, target surfaces with defined Gaussian curvatures K. Center, inverse designed sheet,
where n̂ specifies deformation’s orientation and ϵ is an experimentally accessible system feature controlling the deformation’s
magnitude, which is designed with n̂ such that the sheet deforms into the target surfaces. Right, actuated sheet deforming into multiple
target surfaces in response to different values of the stimulus Λ.
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The quantities b, s, p, and q (and, by extension, the Gaussian
curvature) are thus determined by ϵ, α, and β.
Since ϵ, α, and β are independent, the relations in

Eq. (4) allow for the simultaneous satisfaction of Eq. (5)
for multiple surface geometries. To obtain solutions, this
system of PDEs must be diagonalized and shown to
be integrable. We illustrate this procedure for a flat sheet
that deforms into two different target shapes, and we
show how it naturally extends for an arbitrary number of
target shapes.
Inverse design of two target surfaces.—Consider a

uniaxial sheet with a single scalar designable feature ϵ
affecting the deformation such that, without loss of general-
ity [39], ∂ϵλ1 ≠ 0. The curvatures of the initial sheet
and two target surface geometries K ¼ ½K0ðrΛ0

Þ; K1ðrΛ1
Þ;

K2ðrΛ2
Þ� define three PDEs in ϵ, α, and β. The equations are

linear in ∂vb, ∂us, ∂up, and ∂vq. The variations of ϵ, ∂up,
and ∂vq, however, are not independent; and, as shown
in the SM [38], ∂vq determines ∂up given a Cauchy
problem [40]. Recasting Eq. (5) in terms of the unknown
highest order terms

K̄ ¼ K −M · d;

MiðΛiÞ ¼ ð 1
λ2
2

; − 1
λ2
1

; − ∂ log λ1
λ2
2
∂ϵ Þ; i ∈ f1; 2; 3g;

d ¼ ð 1β ∂vb; 1
α ∂us; 1

β ∂vq Þ; ð6Þ

it is possible to determine ∂vb, ∂us, and ∂vq in terms of K̄,
which are functions of α, β, ϵ, p, q, b, s, ∂up and the
prescribed target curvatures K:

d ¼ M−1 · ðK − K̄Þ: ð7Þ

Equations (1), (3), (4), and (7) form a system of PDEs
whose solution is a uniaxial sheet that deforms into the
two desired target surfaces, realizing their prescribed
metrics, upon actuations Λ1 and Λ2 (see Fig. 1).
Supplemented by analytical initial conditions, this system
is complete and integrable [38,41,42]. Furthermore, if one
of the deformation magnitudes is insensitive to ϵ, which is
the case for existing implementations of uniaxial sheets
[17,35], the system of equations is hyperbolic; and a
solution can be integrated from initial conditions for a
substantial domain [43].
It is illuminating to find solutions of the inverse problem,

ϵðrÞ and n̂ðrÞ, by integrating a Goursat-like problem [44]
as depicted in Fig. 2. Initial data consist of a position
and director on each target surface, which are accompanied
by u and v curves on the initial surface, where data

propagating across each curve are given on it. That is,
data for ðα; b; ϵ; qÞ are given on the u curve, and data for
ðβ; sÞ are given on the v curve. A solution is then found by
iteratively propagating the data along u and v. The variables
u data≡ ðα; ϵ; b; p; ∂vp; q; frΛi

; n̂Λi
g2i¼0Þ are propagated a

step dv, forming a new u curve. Next, the curvatures of the
target surfaces ½K1ðrΛ1

Þ; K2ðrΛ2
Þ� are obtained along the

new curve. With these curvatures, we obtain the values of
∂us through Eq. (7), which we integrate to obtain s and β
along the new u curve, completing the data on it. The
integration steps are iterated until a global solution
ϵðrÞ; n̂ðrÞ of the inverse problem is found, or until a
singularity forms: α ¼ 0; β ¼ 0; or for all applied stimuli,
λ1 ¼ λ2.
Singularities.—The first two singularities where α or β

vanish are defects in the nematic texture discussed in [20].
The third (λ1 ¼ λ2 for all applied stimuli) is an isotropic
point. At such a point, variations of the director no longer
affect the deformation; and the sheet cannot be designed to
obtain all target curvatures simultaneously. The appearance
of singularities may be delayed by varying the initial
conditions such that greater coverage of the target surfaces
is achieved [20].
Inverse design of multiple surfaces.—In general, if there

are N designable features ϵ independently affecting a
uniaxial sheet’s deformation, then the sheet may be
designed to morph into N þ 1 independent surfaces.
Here, the inverse design procedure is nearly identical to
that of a sheet morphing into two shapes. The key differ-
ence is that because there are multiple designable features,
we can no longer assume that they all affect the deforma-
tions along the director. For example, if ϵ1 affects only the
deformation along the director λ1 while ϵ2 affects only the
deformation across it λ2, then the variations of ϵ1 across
the director and ϵ2 along it (∂vq1 and ∂up2) are relevant to
their inverse design; whereas ∂up1 and ∂vq2 are not.
Equation (6) then needs to be modified to account for
the relevant highest order terms d, which now include ∂vb,∂us, and a mix of ∂upi and ∂vqj. The coefficients matrixM
is then appropriately redefined such that, after subtracting
M · d from the curvatureK, the remainder K̄ is no longer a
function of the relevant highest order derivatives. The
accordingly modified Eq. (7) together with Eqs. (1), (3),
and (4) then composes a complete, integrable system of
equations whose solutions are sheets deforming into N þ 1
target surfaces. The detailed derivation of the equations and
an integration scheme are given in the SM [38].
Multiple independent stimuli.—The formulation of the

inverse problem and the above integration scheme also
hold when the deformation occurs in response to multiple
independent stimuli, such as light, pressure, or heat:
Λ ¼ ðΛ1;…;ΛkÞ. An example of a solution to such a
multitarget inverse problem is presented in Fig. 3. The sheet
depicted has two designable features separately affecting
its deformation magnitudes in response to independent
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stimuli: λ1ðΛ1; ϵ1Þ and λ2ðΛ2; ϵ2Þ. Such a sheet can morph
into highly distinct surfaces. In response to Λ1, the sheet
extends along n̂ and morphs first into a sphere of constant
curvature, and then into a face with a complex curvature
profile. In response to Λ2, the sheet morphs across n̂ into
a surface oscillating along two orthogonal coordinates
with two different periods. The sheet can then transform
into the face, without going through the sphere, by
simultaneously changing both stimuli and extending
along n̂ while contracting across it. This example illus-
trates a general feature: the path in shape space of a sheet
morphing between target geometries in response to
multiple independent stimuli can be manipulated in a
nontrivial manner.
Locomotion and work.—Cycling between multiple

shapes is a standard method of doing work and performing
complex tasks. It is of particular importance in microscopic
machines (such as swimmers) that, due to their size, operate
in settings where viscous forces dominate inertial forces,
resulting in instantaneous flows that have “no memory.”
As a consequence, only nonreciprocal motions give rise to a
net propulsion [46]. We provide a simple design for a
composite sheet that is capable of locomotion in such
environments (Fig. 4). The composite sheet consists of two
homogeneous layers with independently controllable,
orthogonal, director patterns whose actuated Gaussian
curvatures are opposite [Fig. 4(a)]. When the sheets are
sequentially actuated and then simultaneously relaxed, they
execute a simple nonreciprocal work cycle [Fig. 4(b)] [25]
that results in an overall translation along the axis of
symmetry [Fig. 4(c)].
This locomotion is powered by the work that the sheet

does on its environment. For any actuation, this work is
bounded by the frustrated elastic energy [48] that would
build up if the sheet was constrained to stay in its initial
configuration. Because we have defined a common coor-
dinate system, we can integrate the energy density along the
target surfaces to obtain this bound,

E ¼ h
ZZ

Eðλ1; λ2Þ
Target Surface

dA; ð8Þ

where h is the sheet’s (unactivated) thickness, and the
energy density E on a target surface is derived in the
SM [38]. Finally, although we have used all the deforma-
tion degrees of freedom to obtain the target surfaces, we can
still vary the initial conditions to control the sheet’s
capacity to do work along a prescribed curve on the target
surface. Such control may find applications in the design of
lifters [6]: for instance, where a greater concentration of
elastic energy at points of contact may be advantageous.
Collectively, the ability to use this inverse design approach
to design a sheet that can morph into multiple surfaces
capable of executing locomotion and even concentrating
elastic energy at specific locations is quite remarkable.
Discussion.—By systematically utilizing multiple degrees

of freedom to program a single sheet of material so that it can
transform into multiple target geometries, we have provided
a vital theoretical foundation for the design of printable
sheets capable of executing complex behaviors. The inverse
design of a specific system using this approach is straight-
forward. One needs to (i) specify the set of designable
features and how they affect the deformation magnitudes in
response to stimuli, (ii) select a compatible number of target
surfaces to be obtained at specified actuation values, and
(iii) choose initial conditions for the integration procedure.

FIG. 3. Inverse design of multiple shapes. A flat uniaxial sheet
with two designable system features [λi ¼ expðϵiΛiÞ; i ∈ f1; 2g]
is designed to deform into three target shapes in response to two
stimuli Λ1 and Λ2. The sheet deforms into a sphere and then a
facelike mask in response to Λ1 and into a wavy sheet in response
to Λ2. Maximal strains are below 300% and are within exper-
imental reach [45].

(b)

(c) (d)

(a)

FIG. 4. (a) Bilayered uniaxial sheet composed of a top layer
with an azimuthal director pattern and a bottom layer with the
orthogonal radial director pattern. Top and bottom layers
deform into cones and anticones upon actuation, respectively
[47]. (b) Nonreciprocal cycle of shape transformations between
multiple flat and conical shapes in the bilayered design through
the use of two independently controllable stimuli Λ1 and Λ2 and
the corresponding cycle in parameter space. (c) Locomotion of
a swimmer at low Reynolds number with net displacement Δx
achieved during each cycle. (d) Bounds on work [E from
Eq. (8)] that system can perform on its surroundings at each
stage of cycle.
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Using these inputs, the code [49] produces designs for the
director n̂ and designable features ϵ.
Candidate systems for the implementation of this design

modality include (i) liquid crystal elastomers, where the
deformation’s orientation and magnitude can be controlled
by varying the nematic director’s in-plane and out-of-plane
orientation [27,50], or the extent of deformation in response
to the nematic phase transition [51]; (ii) four-dimensionally
printed hydrogels, anisotropically deforming along aligned
cellulose fibrils, whose orientation in and out of the plane
similarly control the deformation’s orientation and magni-
tude; and (iii) microrobotic kirigami metamaterial sheets
where the deformation’s orientation and magnitude can be
controlled by varying the local bending of chemical or
electrochemical actuators [1,52–54]. In each of these exam-
ples, the deformations are typically applied globally. As
fabrication techniques improve, it may be possible to control
the actuation at each point along the surface independently.
In this scenario, we can use the inverse design framework
developed here to obtain the desired target shape by treating
the actuation as a designable feature. Such designable local
actuations would allow a single sheet to update its target
curvatures on the fly and morph into almost any desired
surface geometry in real time.
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