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Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenome-

non with applications ranging from pharmacology to geology. Through experiments and simulations,

we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This

enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain

amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This

separate tunability of translational and rotational diffusion opens the door to new techniques for

controlling positions and orientations of suspended anisotropic colloids.
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G. I. Taylor [1] was the first to point out that a Brownian
particle in a pipe diffuses faster when the suspension is
flowing. Qualitatively, this behavior arises because diffu-
sion along the radius of the pipe allows the particle to be
advected with the flow at different speeds [1,2]. This effect
on translational diffusion is general. As such, Taylor dis-
persion has become a useful paradigm for understanding
diverse phenomena ranging from fluid transport in rock
strata [3,4], to nutrient distribution in farm soils [5], to drug
delivery control [6], and to the measurement of the diffu-
sion constants of slowly diffusing substances [7,8].

Given the importance of enhanced translational diffu-
sion, we ask whether dispersant orientations are also
affected by shear. Colloidal particle orientations are
randomized by thermal motion via rotational diffusion
[9]. However, the effect of flows on orientational diffusion
remains poorly understood. Enhanced translational diffu-
sion under shear results from the particle accessing stream-
lines with different flow velocities. Similarly, we expect
that a particle with access to rotational trajectories with
different angular velocities might display enhanced rota-
tional diffusion. Particles with axial symmetry ‘‘tumble’’
with an unsteady rotation in what are known as Jeffery
orbits. The orientation of these particles is completely
specified by a unit normal ~n. For a particle with an effective
aspect ratio p in a flow with strain rate _�, the periodic
tumbling is described by [10,11]

tan�ðtÞ ¼ p tan

�
_�t

pþ 1=p

�
;

tan2� ¼ ½�2ðpcos2�þ 1=psin2�Þ��1;
(1)

where� is the azimuthal angle from the gradient direction,
� is the polar angle between the vorticity direction and the
particle’s orientation, and �2 is an orbit constant set by
the initial conditions. For isotropic particles p ¼ 1 and the
particle tumbles uniformly. However, if p � 1, a particle’s
orientation is advected with different angular velocities

depending on its position in the periodic orbit. Thus, in
analogy with results for translational Taylor dispersion, we
would expect enhanced rotational diffusion for nonspher-
ical particles under shear.
Here we report experiments and simulations addressing

rotational and translational diffusion of colloid dimers
under oscillatory shear. We find the rotational diffusion is
enhanced and depends on the dimensionless strain rate or
Péclet number Pe, effective aspect ratio p, and shear strain
�. Moreover, the dependence of rotational diffusion on
these three parameters differs markedly from the transla-
tional diffusion. With the advent of new techniques for
synthesizing nonspherical particles and their increasing
importance in novel materials [12,13], separate tunability
of rotations and orientations promises important applica-
tions in mixing and self-assembly.
To explore rotational diffusion under shear, we used

hollow silica colloidal dimers whose lobes are �1 �m in
diameter [14] suspended in an index-matched but density-
mismatched 80:20 glycerol:water solution dyed with fluo-
rescein salt. The dimers are slightly elongated, with a
length-to-width aspect ratio of 2.5. In addition, we deter-
mined the dimer hydrodynamic aspect ratio by fitting 200
measured Jeffery orbits to Eq. (1). We measure a median
aspect ratio of 2:3� 0:9, consistent with previous predic-
tions and measurements for true dimers [15,16].
Previous studies demonstrated that dense suspensions

of rodlike particles under shear display enhanced trans-
lational or rotational diffusion, which can arise from
many-body hydrodynamic effects [17], collisions [18],
or particle-particle interactions [19]. To focus solely on
coupling between Brownian motion and shear, we use
suspensions at very dilute volume fractions of �10�4.
Consequently, to obtain statistical power each particle
must be tracked for days at a time. While such measure-
ments are challenging due to limitations in apparatus
stability, they cleanly eliminate many body effects and
clarify the interpretation of our results.
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The suspension is loaded in a shear cell consisting of a
4� 4 mm silicon wafer positioned above a glass cover slip
and held parallel with less than 1 �m variation over the
length of the wafer. The gap separation was tuned from 7 to
12 �m in order to vary the strain amplitude. While the plate
separation could be set accurately, over the duration of our
long experiments we measured that the gap size could drift
by up to 20%, which in turn affected the applied strain. The
silicon wafer is held stationary, while the glass cover slip is
sheared by a piezo controller under oscillatory triangle-
wave shear. Our setup mounts on a fast confocal microscope
allowing us to accurately image the three-dimensional po-
sition and orientation of a colloidal dimer at peak-to-peak
shear strains up to � ¼ 3:4 and frequencies up to 0.2 Hz.

We image the dimer’s position and orientation with a full
three-dimensional scan, oversampling in all three direc-
tions to increase measurement precision [see Fig. 1(a)].
After accounting for optical distortion [20], we use a
custom featuring code to reconstruct the particle voxels
[see Fig. 1(b)]. Principal component analysis is used to
determine the particle orientation [21]. Using this method
we can determine the particle orientation to within � 5�
as well as locate the particle’s position with subpixel

resolution—within 30 nm in the flow x and vorticity z
directions, and within 100 nm in the gradient direction y.
Under shear, the dimer’s position is advected with the

flow, while its orientation tumbles in a Jeffery orbit.
Translational and rotational Brownian motion additionally
randomize the position and orientation, resulting in a net
displacement after each cycle [see Fig. 1(c)]. To track the
long-time behavior of the dimer under shear, we take a
strobed image at both ends of the triangular cycle [see
Figs. 1(d) and 1(e)] and reconstruct its trajectory [22].
From these trajectories we extract the orientational distri-
butions (see Fig. 2). The effective translational diffusion
tensor Deff , and the effective rotational diffusion constant
Dr

eff are extracted using the time correlations:

h ~nðtÞ � ~nðtþ �tÞi ¼ e�2Dr
eff
�t;

hxiðtÞxjðtþ �tÞi ¼ 2ðDT
effÞij�t;

(2)

where �t is an integer number of periods T [see Figs. 3(a)
and 3(b)]. While we find that the rotational data in Fig. 3(b)
are well fit by a single exponential decay, we note that
rotational diffusion is strictly speaking a tensorial quantity
that can in principle vary with orientation.
To complement our experimental investigations, we

model a colloidal dimer in a shear flow with a Langevin
equation. The particle orientation ~n evolves as

d ~n

dt
¼

�
� � ~nþ p2 � 1

p2 þ 1
½E � ~n� ~nð ~n �E � ~nÞ�

�

þ ð2Dr
0Þ1=2 ~�ðtÞ: (3)

The first term in the large parentheses describes a uniform
rotation due to a shear flow, and the second term accounts

FIG. 1 (color online). (a) Representative confocal microscope
images of a dimer. (b) The reconstructed voxels and orientation
of the dimer. (c) The reconstructed trajectory of dimer under
triangle-wave shear. The flow direction is indicated by arrows.
The peak-to-peak strain is � ¼ 3:4 and the period T ¼ 100
seconds. The dimer’s position and orientation are represented
by the rod, and the color variation represents the time. In our
analysis, we record the dimer position and orientation at the
cycle extrema, corresponding to the cyan, blue, and red rods.
(d) A trajectory of 250 strobed positions, color coded in time.
(e) The corresponding orientations, plotted on the unit sphere.

FIG. 2 (color online). (a), (b) Measured orientation distribu-
tion from 12 000 simulation cycles at p ¼ 2:3, Pe ¼ 600, and
� ¼ 3:4, plotted on the unit sphere. The distribution oscillates
with the flow. Thus different orientations are observed at integer
versus half-integer cycles. (c), (d) The same distribution as in (a)
and (b), but plotted with an equiareal mapping where � is the
polar angle measured from the gradient direction, and � is
the azimuthal angle measured from the flow direction. (e),
(f) The orientation distribution from experiment, separated by
full (e) versus half (f) cycles, measured at the same Pe, �.
All images share the same color scale.
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for the effects arising from particle shape and orientation
relative to the imposed shear strain [10]. The final term
on the right hand side accounts for rotational Brownian
motion. Here Dr

0 is the rotational diffusion constant of the

particle and ~� is a diffusive white-noise term. � is the
vorticity tensor and E is the rate-of-strain tensor for
triangle-wave oscillatory shear: �ij ¼ 1=2ð@iuj � @juiÞ,
Eij ¼ 1=2ð@iuj þ @juiÞ.

Our experiment consists of suspensions of sedimenting
spheroids in a shear flow bounded by rigid surfaces,

whereas our simulation models the rotation of a single
spheroid in an infinite fluid. While our experiment mini-
mizes interparticle hydrodynamic interactions [17,23–25]
by using extremely dilute volume fractions, because of the
geometry of the experiment we cannot avoid interactions
with the wall [26,27]. Nevertheless, we find similar behav-
ior between our experiments and simulations, despite the
fact that the walls considerably influence the translational
dynamics. We posit that the reason for this agreement is
that, as simulations have shown, the wall’s effect is only at
the few percent level on the Jeffery orbits [26], which is
what ultimately affects the rotational diffusion.
Three dimensionless parameters control the particle’s

distribution and diffusivities: the aspect ratio p, the
dimensionless strain rate or Péclet number Pe ¼ _�=Dr

0,

and the peak-to-peak strain amplitude � ¼ _�T=2
[Eq. (3)]. Previous works [28] have shown that Eq. (3)
leads to an inhomogeneous steady-state distribution of
particle orientations under continuous shear. In contrast,
our experiments and simulations for oscillatory shear show
that the orientational distribution oscillates with the flow
[Figs. 2(b) and 2(d) versus Figs. 2(c) and 2(e)]. While the
distributions show the ~n ! � ~n symmetry required by
Eq. (3), they are not symmetric about either the gradient
or flow axes separately (see the Supplemental Material
[29]). At low Pe, �, or near p ¼ 1, the orientational
distribution becomes isotropic. Interestingly, increasing
Pe at fixed � strengthens the alignment, whereas increasing
� at fixed Pe both strengthens the alignment and alters its
direction. We find excellent agreement between simula-
tions and experiments. Moreover, at high amplitude and
high Pe the simulated distributions approach previous cal-
culations for rods under continuous shear [28].
In addition to distributions, we simultaneously mea-

sure the particle’s rotational and translational diffusion
after an integer number of cycles. We find the particle’s
translational [19,30] and rotational motions are well fit
by diffusive trajectories of Eq. (2). The translational
mean-square displacement, shown in Fig. 3(a), increases
linearly with time while the time-correlation of particle
orientations, shown in Fig. 3(b), exponentially decays.
From these curves we extract effective diffusion con-
stants, which depend on the dimensionless parameters
Pe, �, and p.
The experimental data in Fig. 3(c) show the translational

diffusion along the flow direction ðDT
effÞxx increasing with

�. ðDT
effÞxx ranges from its equilibrium value at � ¼ 0 to

� 3:5 times its equilibrium value at � ¼ 3. In contrast, the
diffusion constants along the gradient and vorticity direc-
tions ðDT

effÞyy and ðDT
effÞzz remain at the equilibrium value.

Theory predicts that for spherical particles in triangle-wave
shear the diffusivity is [30]

hx2i ¼ 2Dxtþ 2

3
Dy�

2t hy2i ¼ 2Dyt hz2i ¼ 2Dzt; (4)

FIG. 3 (color online). (a) Measured mean-square displacement
along flow (red squares), vorticity (green circles), and gradient
(blue triangles) directions. (b) Measured correlation of the corre-
sponding orientations. (c) Normalized translational diffusion
DT

eff=D
T
0 , along all three axes versus � at fixed Pe ¼ 80.

Symbols correspond to measurements while the black lines cor-
respond to predicted values [Eq. (4)]. The gray band indicates the
effects of experimental uncertainty in � on the prediction. Inset:
The predicted diffusion along the flow direction for 0< �< 15.
Red box illustrates range in main panel. (d) Dr

eff=D
r
0 for the same

data set as (c), as measured from experiment (cyan squares) and
simulation at p ¼ 2:3 (black points). Shaded band indicates the
effect of experimental uncertainty in aspect ratio. Inset: Simulated
rotational diffusion for 0< �< 15. Red box illustrates range in
main panel. (e), (f) Translational (e) and rotational (f) diffusion at
constant � ¼ 3:4 and varying Pe. Overlaid in black lines are the
expected values from theory (c) and simulation (d).
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where x, y, and z are the flow, gradient, and vorticity
directions and t is taken at integer multiples of the cycle
period. Clearly, an anisotropic particle has different diffu-
sivities along its different axes [31,32]. Since the particle’s
orientation couples to the flow, Dx, Dy, and Dz in Eq. (4)

will depend on the applied shear flow. Building on results
for continuous shear [33], however, we calculate this
change to be at the few percent level in our experiments.
We thus compare our data with Eq. 4 in Fig. 3 using
equilibrium values for Dx, Dy, Dz. We find excellent

agreement between theory (black lines) and experiments
(data points) for all the effective diffusion constants.
As predicted, only ðDT

effÞxx increases with �. As shown in

the inset of Fig. 3 the effective diffusion along the flow
direction increases quadratically with � indefinitely.

Since at fixed �DT
eff depends on Pe only throughDx,Dy,

Dz, we predict an enhanced ðDT
effÞxx even as Pe ! 0 and

no measurable dependence of DT
eff on Pe. As expected, we

observe that ðDT
effÞyy and ðDT

effÞzz remain constant while

ðDT
effÞxx is significantly enhanced even at the lowest Pe

measured [see Fig. 3(e)]. However, there is a weak trend
in the ðDT

effÞxx data. We attribute this trend to experimental

effects from fluctuations in the shear cell gap (gray band)
and gravitational settling that can affect data at low Pe [29].

We find that Dr
eff is also enhanced by shear, nearly

doubling by � ¼ 3 [see Fig. 3(d)]. A similar trend is
observed in our simulations (black line; gray band accounts
for uncertainty in p). However, simulations at larger � than
those accessible in experiments show that Dr

eff saturates at

a value that depends on Pe and p [see the inset of Fig. 3(d)].
Because Jeffery orbits are periodic with strain, after the
orientation has completed half a period [� ¼ �ðpþ 1=pÞ]
no new rotational dynamics appear. Since larger strain does
not provide access to new changes in the streamlines, the
rotational diffusion saturates. In contrast, the translational
diffusion increases indefinitely, as there is no strain scale
for translations.

The Pe dependence of Dr
eff contrasts with translational

diffusion. While ðDT
effÞxx remains enhanced at low Pe, in

both experiment and simulation Dr
eff increases continu-

ously with Pe [see Fig. 3(f)]. Our simulations also suggest
that for large Pe Dr

eff still increases, albeit slowly [29].

A more complete map of the dependence of Dr
eff on Pe

and � for p ¼ 2:8 is shown in Fig. 4(a). This figure sum-
marises 778 simulations of Dr

eff in the range 0<�<30
and 0< Pe< 1400. The heat maps show that both
trends—Dr

eff increasing slowly with Pe and saturating at

high �—are general over a large range of parameters. In
addition, they illustrate two unexpected trends. First, the
slight slopes observed for the contours of Dr

eff indicate that

the dependence on Pe and � is coupled. Second, we find
multiple resonances in Dr

eff with increasing �, visible as

the dark red ‘‘bumps’’ at high Pe in Fig. 4(a) and the peaks
in Fig. 4(c). These oscillations result from the Jeffery orbit
periodicity. Particle rotation under triangle-wave shear

maps onto rotation under continuous shear when � corre-
sponds to an integer number of half Jeffery orbits [distance
between vertical dashed lines in Fig. 4(c)].
While it is known that increasing aspect ratio can at most

vary translational diffusion anisotropy by a factor of 2 for
rods in bulk fluids [34], here we find a much stronger
dependence of the rotational diffusion on aspect ratio.
Although it is difficult to alter the aspect ratio in experi-
ments, we can examine the dependence of Dr

eff on p in

simulation. To this end, we evaluated Dr
eff at 537 different

� and Pe values and at fixed p ¼ 7:0 [see Fig. 4(b)].
At large Pe the rotational diffusion again saturates when
�� �ðpþ 1=pÞ. However, while Dr

eff at p ¼ 2:83 was

enhanced by 2.4, we find that Dr
eff at p ¼ 7 is enhanced by

a factor of 9. The general trends in the data for the depen-
dence ofDr

eff on p can be examined by plottingDr
eff versus

the Jeffery coefficient � ¼ ðp2 � 1Þ=ðp2 þ 1Þ at fixed Pe
and � [see Fig. 4(d)]. We find that Dr

eff remains finite as

p ! 1. For � ¼ 2:8 this value is roughly 2 at Pe ¼ 1000
[see the cyan squares, in the main panel of Fig. 4(d)]
whereas for � ¼ 15 this value increases to 14 at Pe ¼
1000 [see the inset of Fig. 4(d)]. Finally, for all simulated
Pe and �, we find no enhanced diffusion in the limit of
spherical particles and uniform rotation (p ! 1). Just as
enhanced diffusion due to Taylor dispersion requires
access to a gradient in the real-space streamlines, enhanced
rotational diffusion requires access to nonuniform rota-
tional trajectories.
Overall, the diffusion of a colloidal dimer shows a

complex dependence on the shear flow and the particle
aspect ratio. Simply by changing the applied shear, the

FIG. 4 (color online). Dr
eff=D

r
0, plotted against both Pe and �

at p ¼ 2:83 (a) and p ¼ 7:0 (b). (c) Data from (a) at Pe ¼ 1400
demonstrating oscillations in Dr

eff with �. (d) Dr
eff=D

r
0 versus

� ¼ ðp2 � 1Þ=ðp2 þ 1Þ, taken at fixed � ¼ 2:83 and at four
separate Pe: 10 (blue circles), 40 (red vertical triangles), 289
(green horizontal triangles), and 1000 (cyan squares). Inset:
Dr

eff=D
r
0 versus � at Pe ¼ 10, 40, 1000 and � ¼ 15.
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rotational diffusion of a colloidal particle can be tuned
absolutely and relative to the translational diffusion. In
particular, by changing � the translational diffusion
increases indefinitely, whereas the rotational diffusion
saturates. This separate tunability of orientations and posi-
tions opens the door to new techniques for manipulating
self-assembly, particle separation, and suspension rheol-
ogy. Moreover, the formulation of these results extends to
two and even three axis shear flows, allowing an additional
handle for manipulating particle orientations and positions.
Further measurements with larger data sets may be able to
look for anisotropy in the rotational diffusion. Nearly
60 years after Taylor originally showed that translational
diffusion could be enhanced by flow, new techniques in
particle synthesis and measurement of orientational trajec-
tories show that these general principles can be extended to
rotational diffusion.
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