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Automated particle locating algorithms have revolutionized microscopy image analysis, enabling
researchers to rapidly locate many particles to within a few pixels in a microscope image. The
vast majority of these algorithms operate through heuristic approaches inspired by computer vision,
such as identifying particles with a blob detection. While rapid, these algorithms are plagued by
biases [4, 15, 24], and many researchers still frequently ignore or understate these biases. In this
paper, we examine sources of biases in particle localization. Rather than exhaustively examine all
possible sources of bias, we illustrate their scale, the large number of sources, and the difficulty of
correcting the biases with a heuristic method. We do this by generating a series of simple images,
introducing sources of bias one at a time. Using these images, we examine the performance of two
heuristic algorithms throughout the process: a centroid algorithm and a Gaussian fitting algorithm.
We contrast the two heuristic methods with a new approach based on reconstructing an image
with a generative model to fit the data (Parameter Extraction from Reconstructing Images, or
PERI). While the heuristic approaches produce considerable biases even on unrealistically simple
images, the reconstruction-based approach accurately measures particle positions even in complex,
highly realistic images. We close by reiterating the fundamental reason that a reconstruction-based
approach accurately extracts particle positions – any imperfections in the fit both demonstrate which
sources of systematic error are still present and provide a roadmap to incorporating them.

Over the past three decades, computer analysis has
revolutionized microscopy. The improvement is espe-
cially salient in particle tracking experiments. Modern
algorithms inspired by computer vision automatically lo-
cate thousands of particles with near-pixel or sub-pixel
accuracy, all in a few blinks of an eye [2, 3, 6, 12, 15,
22, 26]. However, it has proven difficult to extend the
accuracy of these particle localization algorithms below
a fraction of a pixel, especially in complex images. In
a recent paper, we proposed a different methodology for
measuring particle positions. We advocate measuring pa-
rameters such as particle positions by reconstructing the
entire image, in a method called Parameter Extraction
from Reconstructing Images or PERI [7]. In this let-
ter, using a series of examples, we demonstrate many of
the limitations of previous, heuristic particle localization
methods, and we show how a generative model frame-
work based on reconstructing the image (such as PERI)
can overcome these limitations.

Many of the users and creators of these heuristic al-
gorithms are aware of the presence of biases, as evi-
denced by the extensive literature on the subject [4, 9–
11, 15, 19, 20, 24, 26, 30] and from many personal con-
versations we have had with members of the community.
Some of what we say in this letter is not new. Neverthe-
less, we feel that the the magnitude of biases and their
myriad of sources is under-appreciated by most, and we
would like to use this space to emphasize and explore
sources of biases in particle localization algorithms.

By a “heuristic” method, we mean any method that
measures properties of an image (such as particle posi-
tions) with an incomplete proxy, usually without check-
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ing the proxy against the measured intensity data itself
through a generated image. For example, locating par-
ticles with an intensity centroid is a heuristic method.
Such an algorithm measures the intensity centroid in a
region of interest, interpreting the centroid as the parti-
cle’s physical position. The centroid algorithm does not
reconcile the resulting position against the intensity val-
ues of the image itself, leaving no way to check whether
the centroid proxy adequately describes the data. As we
will show below, a proxy of an intensity centroid does
not adequately describe real images. Likewise, refining
particle positions by fitting a region to a Gaussian blur
is a heuristic. Since a real image of a particle is quite
different from a Gaussian blur, there is a considerable
difference between the measured intensity data from a
real image and even the best-fit Gaussian blur. As such,
the Gaussian-fitting proxy is inadequate for real images,
and its positions will be biased, as we show below. Simi-
larly, locating particles by finding a center of radial sym-
metry [26] or by finding the center from which the im-
age’s intensity decays [2] are also heuristics. While all
these heuristic methods use the image intensity to esti-
mate particle positions, at no point in their algorithms is
the inferred data compared to the raw intensities of the
image itself.

A reconstruction approach fundamentally differs from
these heuristic methods. In a reconstruction approach,
a model image, based on the detailed physics of image
formation, is created and compared directly to the raw
intensity data. Examining the difference between the
model and the data provides a rigorous way to test the
quality of the extracted parameters, through a Bayesian
examination of the evidence. A good reconstruction, one
that is based off a complete model of the image forma-
tion, will correctly describe the raw image intensities,
provide physically accurate parameters, and capture all
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the signal in the data possible.

A detailed comparison of a reconstruction-based ap-
proach against a commonly-used centroid method is
shown for a suite of realistic images in the supplemental
information of ref. [7]. However, looking at these plots
doesn’t make it clear why the heuristic method returns
imperfect results. This document explores the why a lit-
tle deeper. To that end, we’ll start with the simplest
possible image and gradually add complexity, seeing how
the heuristic methods compare to a reconstruction-based
approach (PERI) all the while.

Throughout we compare PERI with two heuristic
methods. The first method identifies particles centers
through intensity centroids, as developed by Crocker and
Grier [12] and implemented in Python as trackpy [1]. The
second method refines the particle positions by local fit-
ting to a Gaussian, inspired by many algorithms such as
ref. [3], but using our own implementation. We’ve picked
these two heuristic methods because they are some of the
most commonly used. However, the biases investigated
below will apply generically to any heuristic method.

Briefly, the centroid method as implemented in trackpy
works by smoothing the image for noise- and background-
subtraction, then identifying bright spots in the image as
particles. It then refines the positions of those particles
by finding the centroid in a region-of-interest around the
bright pixel. You can find a description of the centroid
method in detail online [1]. To refine the particle posi-
tions by fitting the image to a Gaussian, we fit the am-
plitude, center, and width of the Gaussian, as well as a
nonzero offset. For the images with multiple particles,
we’ve selected a region-of-interest around each particle
and fit to a Gaussian. For images with multiple parti-
cles, we’ve used the initial image the size of the region-
of-interest of the particle.

To analyze images with PERI, we always used a com-
plete model to fit the images. To keep the comparisons
fair and as close to real as possible, we randomize all
the parameters in PERI’s model before starting the fit,
including the illumination and point-spread function pa-
rameters and the particle positions and radii.

Our mathematical model for confocal image formation
is given in ref. [7]: a distribution of dye Π is illuminated
by a laser I, convolved with a point-spread function P ,
and imaged on detector with a nonzero background B:

M(x) =B(x)+∫
d3x′ [I(x′)(1− (1− c)Π(x′))]P (x− x′;x) ,

(1)

the constant offset c partially captures rapid variations
in the background, as described in ref. [7]. Throughout,
we generate images I(x) that takes a particular model
image M(x) and possibly adds noise N (x):

I(x) =M(x) +N (x) . (2)

I. IDEALIZED HEURISTICS WORK
PERFECTLY FOR IDEALIZED IMAGES.

To start, we’ll examine the simplest possible image:

1. No pixelation, i.e. access to I(x) everywhere.

2. Uniform illumination: I(x) = 1.

3. A simple, Gaussian point-spread function:
P (x− x′;x) = 1/

√
2πσ2 × exp(−(x− x′)2/2σ2)

4. A single sphere:
Π(x) = S(x−xp), where S(x−xp) = 1 for |xp| < a
and 0 otherwise.

5. Uniform, zero background: B(x) = 0, c = 0.

6. No noise.

For this simple case, the object function S(x − xp)
is symmetric about the particle’s center. Neither the
symmetric point-spread function nor the constant illumi-
nation or background break this symmetry. Thus, this
idealized image is symmetric about the particle’s posi-
tion, as can be seen from equation 1. By symmetry, the
center-of-mass of the image will be exactly at the parti-
cle’s position. In other words, for this idealized image a
centroid method works exactly [33].

Likewise, fitting to a simple, symmetric function like
a Gaussian typically gives the exact answer. The image
I(x) is even about xp. Our fitting heuristic fits the image
to some function f(x − xf ). The best fit minimizes the
cost χ2:

χ2(xf ) =

∫ ∞
−∞

[I(x)− f(x− xf )]
2
dxf

Taking a gradient with respect to the fitted position xf

gives

∇fχ
2 =

∫ ∞
−∞

2 [I(x)− f(x− xf )]∇ff(x− xf ) dxf

(3)
There will be a local extremum in the cost χ2 when this
gradient is 0. The Gaussian fitting function f(x−xf ) is
even about 0, and its gradient is odd about 0. Since I(x)
is even about xp, the integral in equation 3 is exactly
zero when xf = xp, and the fit will return the correct,
unbiased position.

So what’s the problem with heuristic methods? The
problem is that the real images that you take on your
microscope are not the idealized images dreamt about
above.

II. SINGLE PARTICLE: PIXELATION

Pixelation is one obvious difference between a real im-
age and the idealistic image above. To demonstrate the
effect of pixelation, we’ve generated a simple, pixelated
image:

1. Pixelation, i.e. access to I(x) at discrete points.
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2. Uniform illumination: I(x) = 1.
3. A simple, Gaussian point-spread function:
P (x− x′;x) = 1/

√
2πσ2 × exp(−(x− x′)2/2σ2)

4. A single sphere:
Π(x) = S(x−xp), where S(x−xp) = 1 for |xp| < a
and 0 otherwise.

5. Uniform, zero background: B(x) = 0, c = 0.
6. No noise.

Figure 1 shows such an image and the three algorithms’
performances. The particle is centered exactly on the
pixel at position (x, y, z) = (10, 10, 10), it has a 5 pixel
radius and is imaged with a Gaussian point-spread func-
tion with width σ = 1. These parameters are typical for
a 1 µm diameter sphere imaged with a confocal micro-
scope at a 100x magnification, corresponding to a pixel
size of 100 nm in the object space.

The heuristics look great! All of the methods fit accu-
rately to <0.001 pixels, or 1 Å for a typical 100 nm pixel
size! What’s the problem?

The problem starts to appear when we shift the par-
ticle by a fraction of a pixel, as demonstrated in figure 2
and 3. The measured positions are no longer correct but
are biased from their correct values by a small amount.
For this simple image, the bias only depends on the frac-
tional displacement of the particle’s position relative to
one pixel, i.e the bias for a particle at x = 9.1 and
x = 10.1 should be the same. In general, this pixel bias
in each coordinate varies with position of all three coor-
dinates in the unit cell of the pixel. To give an idea of
what it looks like, we’ve plotted the bias in the x position
as a function of the particle’s position along two different
axes in the unit cell: the (x, y, z) = (1, 0, 0) and (1, 1, 1)
axes, as shown in figures 2 and 3.

This problematic bias is known as pixel bias or pixel
locking and is discussed extensively in the literature [3,
5, 6, 9, 10, 14, 15, 17, 28]. The finite sampling from the
pixelation breaks the translational invariance of the im-
age and prevents simple heuristics from getting the exact
answer. Due to the periodicity and mirror symmetry of
the pixelated grid, the bias b(x) is both periodic and
odd about the pixel center. Since the bias is odd, there
is no bias for particles centered exactly on a pixel. The
raw centroid method has significant pixel bias, as shown
in figure 2 and 3. The Gaussian fitting does well, but
it is not perfect. As visible in the figures, the Gaussian
fitting method produces a bias in the fit of about 0.005
px, or 0.5 nm for a typical 100 nm pixel size. But these
images have no noise, so the Cramer-Rao bound [7, 29]
is 0, and a good method should get the exact answer.
For these images, the imperfection is mostly intellectual,
since 0.5 nm is a tiny error, but small errors like this can
add up and more problems will appear with the Gaus-
sian fitting method as we move on. Finally, in contrast
to the two heuristic methods, the reconstruction method
PERI locates the particle almost exactly, as it should.
The tiny numerical errors of about 10−5 pixels are from
slightly incomplete fit convergence, which is typical in
most least-squares fitting algorithms.

III. SINGLE PARTICLE: VARYING
ILLUMINATION

Real images have spatially-varying illumination,
whether from dirt on the optics or from the light source
itself. The gradient in illumination causes biases in the
featuring if not accounted for, shifting the actual inten-
sity centroid of the region and the best-fit Gaussian cen-
ter. To illustrate this, we’ve generated and fit a series of
images with pixelation and a simple illumination gradi-
ent:

1. Pixelation, i.e. access to I(x) at discrete points.

2. Simply-varying illumination: I(x) = 1 + αx.

3. A simple, Gaussian point-spread function:
P (x− x′;x) = 1/

√
2πσ2 × exp(−(x− x′)2/2σ2)

4. A single sphere.

5. Uniform, zero background: B(x) = 0, c = 0.

6. No noise.

To mitigate the effect of pixel bias, we’ve centered the
particle exactly at (x, y, z) = (10.0, 10.0, 10.0), on a point
with zero pixel bias. Instead of being constant, the il-
lumination has a slight gradient along the x direction
only. This gradient creates a bias in the measured posi-
tions along the x direction, while leaving the measured
positions along the y and z directions unbiased, due to
symmetry.

These biases along the x-direction are illustrated in fig-
ure 4. Once again, PERI locates the particle perfectly,
with tiny deviations of ≈ 10−9 which go to zero as the
optimization continues to improve the reconstruction. In
contrast, both heuristic methods produce a clear bias
that worsens with increasing illumination gradient. The
bias from fitting to a Gaussian increases linearly with
the intensity gradient, as one might expect, whereas the
bias from trackpy bounces around discontinuously, seem-
ing to do well at small illumination biases but extremely
poorly at larger biases. At low illuminations trackpy does
well because it subtracts the background with a long-
wavelength filtering. For the simple, linearly-varying il-
lumination in these images, subtracting the background
performs fairly well. The discontinuous jumps in bias
may arise from a detail of the implementation: trackpy
functions by finding a region-of-interest about the par-
ticle and calculating the center of mass of that region.
If the center of mass is different from the region’s cen-
ter by more than a pixel, then the region of interest is
shifted and the center of mass calculated again. The
process is iterated [15], either until convergence or for a
maximum number of times. However, the window shifts
discontinuously, by a whole pixel at a time. (The dis-
continuous shift is present in both trackpy v. 0.3.2 and
in the Crocker-Grier-Weeks IDL code, when iteration is
used [34]). This discontinuous shift could be what causes
the discontinuous jumps in error [5].

Why not just subtract the spatially-varying illumina-
tion? This seems like an obvious solution, especially
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FIG. 1: Left: The idealized pixelated image. Since the image is radially symmetric, we’ve plotted a cut along the x axis. All
three fits from this image are almost perfect, as visible in the left panel and the blow-up in the right panel.

FIG. 2: Pixel bias, for particles shifted by a fraction of a pixel along the (x, y, z) = (1, 0, 0) direction. The right panel is a
zoomed in version of the left.

given the performance of trackpy at low illumination gra-
dients. For a simple image with a slowly-varying illumi-
nation (like the one we’ve generated), subtracting the
background will indeed work. However, for realistic im-
ages the illumination can vary rapidly enough where sub-

tracting it is not feasible, even varying on the scale of the
particle size. As an example, figure 5 shows the illumina-
tion gradient measured from an experimentally-measured
illumination field after smoothing on the scale of a par-
ticle’s size. Even after this smoothing, the illumination
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FIG. 3: Pixel bias, for particles shifted by a fraction of a pixel along the (x, y, z) = (1, 1, 1) direction. The right panel is a
zoomed in version of the left.

gradient still varies considerably. For rapidly-varying il-
lumination gradients like that shown in the figure, re-
moving the long-wavelength variations in intensity will
still miss all the short wavelength structure. Even worse,
in this image the illumination even changes on the scale
of the particle size, and it’s not even clear what removing
this rapidly-varying illumination would entail.

IV. SINGLE PARTICLE: ASYMMETRIC
POINT-SPREAD FUNCTION

So far all the images have been generated with a sim-
ple Gaussian point-spread function. However, real con-
focal point-spread functions are not Gaussians. Confocal
point-spread functions have long tails. Confocal point-
spread functions are anisotropic, with longer tails along
the optical axis (z) than the other two. Most impor-
tantly, confocal point-spread functions are aberrated un-
der realistic imaging conditions. Whenever the index of
refraction of the sample is mismatched from the optical
train’s design, then there will be aberrations present in
the imaging [8, 13, 16, 18, 19, 21, 23, 25]. This aberration

• shifts the center of the point-spread function,

• darkens the portions of the image that are deeper
in the sample,

• broadens the point-spread function, and

• skews the point-spread function, making it asym-
metric between +z and −z.

All of these effects can cause biases in measured data.
The shifting of the point-spread function’s center effec-
tively shrinks the optical z direction compared to the
in-plane directions, which will bias the particle z posi-
tions [7, 23]. The darkening of deeper regions in the
image will induce biases in the same manner as a vary-
ing illumination. And the broadening of the point-spread
function increases the biases induced by nearby particles,
as detailed in the next section.

But even just the asymmetry of the point-spread func-
tion can significantly bias the extracted positions and
radii. To demonstrate this one effect, we’ve generated
images with:

1. Pixelation, i.e. access to I(x) at discrete points.

2. Uniform illumination: I(x) = 1.

3. A point-spread function calculated from diffraction
theory and including aberrations from refractive in-
dex mismatch [18].

4. A single sphere.

5. Uniform, zero background: B(x) = 0, c = 0.

6. No noise.

Positioning the sphere exactly at a pixel center and illu-
minating it with uniform illumination prevents any pixel
bias or illumination gradient bias, leaving the only source
of bias as the point-spread function. To isolate the effects
of the point-spread function’s asymmetry, we’ve gener-
ated images with the deeper regions re-normalized to the
same brightness as the shallower regions, and with the
compression of the optical axis removed [35].
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FIG. 4: Bias induced by a realistic illumination gradient. The “Gauss-fit“ method produces a bias that is linear in the
illumination gradient. While there is no bias for a gradient-free image, the bias increases to a sizable fraction of a pixel as the
gradient increases. In contrast, trackpy performs well sometimes and poorly other times. PERI properly fits the illumination
and thus has no bias in the figure.

We generate images using the point-spread function of
a line scanning confocal microscope under realistic imag-
ing conditions. We calculate the point-spread function
for a microscope with a lens numerical aperture of 1.4,
with illumination light of 488 nm wavelength and de-
tected fluorescence at 550 nm wavelength, the nominal
values of our current imaging setup. The pixel size in
object space is 100 nm, which is typical for 100x mag-
nification. The lens is perfect aside from aberrations in-
duced by the index mismatch between the sample and
the optics. These aberrations increase with both the in-
dex mismatch of the sample and the distance from the
optical interface [18]. Here, we control the aberrations
by varying the index mismatch n2/n1 of the sample (n2)
to the optics (n1) while keeping the particle’s center at a
fixed z position 1 µm above the optical interface. In the
limit n2/n1 = 1, there is no aberration and the PSF is
symmetric with z → −z. As n2/n1 decreases away from
1, the aberration increases and the point-spread function
becomes increasingly asymmetric. Typical images of col-
loidal suspensions are taken with n2/n1 ≈ 0.95 − 0.98,
corresponding to index-matched silica or PMMA.

Figure 6 shows the extracted particle locations from
trackpy , from fitting to a Gaussian, and from PERI.
When n2/n1 = 1, the symmetry of the PSF ensures that
both centroid methods and fitting to a Gaussian per-
form well. As n2/n1 decreases away from 1, the PSF be-
comes increasingly aberrated and the heuristic methods
perform considerably worse, with biases up to 0.8 px (10-

80 nm). In contrast, PERI always accurately measures
the single particle’s position. At very large aberrations
(n2/n1 < 0.95), PERI performs relatively poorly because
the fit landscape of the point-spread function becomes
tortuous, with some possible local minima. However even
in these highly-aberrated images, PERI locates particles
to about 10−4 pixels. As the image becomes less aber-
rated (n2/n1 > 0.95), the simpler fit landscape makes it
easier for PERI to properly fit the image. Here, PERI lo-
cates particles to about 10−5 pixels, despite the difficulty
of fitting both the PSF (7 parameters) and the particle’s
position and radius (4 parameters) with only one particle
in the image.

V. ADJACENT PARTICLES

So far we have only examined biases in images of iso-
lated particles. But frequently as researchers we’re inter-
ested in experiments with many particles. When parti-
cles are close, their diffractive blurs from the point-spread
function can overlap. This overlap interferes with heuris-
tic measures, biasing the extracted positions to be fit
closer or farther together than they actually are [4, 27].

To demonstrate this, we’ve generated some data of
two particles with surface-to-surface separations of an
amount δ in the x-direction.

1. Pixelation, i.e. access to I(x) at discrete points.

2. Uniform illumination: I(x) = 1.
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FIG. 5: Measured illumination gradients along the x-direction, from an image of fluorescent dye without any particles in
it; the illumination is normalized to have a mean of 1. The gradient field shown here has been smoothed twice: once by the
blurring action of the point-spread function in the image acquisition, and again with a Gaussian filter to remove some of the
noise. The illumination gradients in this image after smoothing on the scale of the particle size are about 0.01 / px, the scale
in figure 4.

3. A point-spread function calculated from diffraction
theory and including aberrations from refractive in-
dex mismatch [18].

4. Two spheres, with surface-to-surface separation δ.

5. Uniform, zero background: B(x) = 0, c = 0.

6. No noise.

Since the amount of bias due to an adjacent particle de-
pends on the details of the point-spread function, we’ve
used a physical point-spread function with an index mis-
match of n2/n1 = 0.95 (typical for silica particles in an
index-matched solution). While the PSF is asymmetric
in z it is still symmetric with x→ −x and y → −y, leav-
ing the image of an isolated particle un-biased in x. Like-
wise, the uniform illumination prevents any illumination
gradient bias. However, since we’ve generated data at
separations of a fraction of a pixel, the heuristic methods
have some pixel bias present in them.

The heuristic methods perform quite poorly when
there is more than one particle, as shown in figure 7.
When the particles are in contact (separation of 0 pixels),
both the heuristic methods have serious errors. Fitting
a Gaussian separately to each particle returns sizable er-
rors – about 2 px near contact! The errors from trackpy
are nearly as bad, fluctuating with a magnitude of about
0.5 px. Even at a large separation of 5 px (i.e. one
particle radius), the biases are still considerable – 0.2 px
or 20 nm for fitting and still about 0.5 px for trackpy .

In contrast, PERI identifies the particle positions accu-
rately, with minuscule errors of a few times 10−5 pixels
(corresponding to 1 pm) due to the fit converging.

VI. REALISTIC IMAGE

We’ve examined several realistic sources of bias sepa-
rately. What happens when we include these all together,
in a realistic image?

To examine this, we’ve generated two highly realistic
images, one with noise and one without:

1. Pixelation, i.e. access to I(x) at discrete points.

2. Realistic, spatially-varying illumination, measured
from a microscope image.

3. A point-spread function calculated from diffraction
theory and including aberrations from refractive in-
dex mismatch [18].

4. Many (123) spheres randomly distributed with
varying radii, with some of the particles partially
outside the image.

5. Spatially-varying background.

6. No noise (first) then with noise (second).

To keep these images as realistic as possible, we first
used PERI to fit a real image of a moderately-dilute sus-
pension (volume fraction φ ≈ 0.13) of colloidal spheres.
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FIG. 6: Bias induced by a real point-spread function. As the aberration increases, so does the bias in both heuristic methods,
in a complex, non-monotonic manner. In contrast, PERI properly fits the point-spread function and thus has little to no bias
in the figure. An index-matched sample of silica particles (n2 ≈ 1.44) imaged on a typical microscope (design index n1 ≈ 1.52)
sits at n2/n1 ≈ 0.95; an index-matched sample of PMMA particles (n1 ≈ 1.49) sits at n2/n1 ≈ 0.98. The right panel is a
zoomed in version of the left.

We then used the best-fit image as the generated data,
cropped to a smaller size for speed and convenience. For
the noisy image, we added white Gaussian noise at a
signal-to-noise ratio of 30.

By using a generated image rather than a real image,
we can know the true positions and radii of the particles
and we can directly measure biases in the algorithms on
the particle-scale. In addition, by generating the same
image with and without noise, we can test the relative
effects of random noise versus systematic biases on the
three localization algorithms. Since the fitted image ac-
counts for all but 10−5 of the signal in the image, we can
be certain that our generated image is highly realistic,
and that the biases observed while analyzing our gen-
erated image are representative of biases that would be
observed while analyzing real data. We measure the bi-
ases by analyzing the generated images with each of the
three algorithms, as before, and looking at the differences
between the true positions and the measured positions.
However, in practice most researchers are interested in
relative separations or displacements of particles rather
than absolute positions. As such, we’ve subtracted off
an overall shift in (x, y, z) for the entire image, such as
would arise from a translation of the coordinate system,
before calculating errors [36]. This overall shift is listed
in tables I and II, but the shift is removed for the error
columns in the tables and for the histograms in figures 8-
9.

Once again, the heuristic methods are limited, despite

the absence of noise in the image. The centroid method
trackpy has considerable errors of (0.32, 0.32, 0.36) px
or (32, 32, 36) nm in (x, y, z). Fitting to a Gaus-
sian performs no better, returning errors in (x, y, z) of
(0.7, 0.56, 1.3) px or (70, 56, 130) nm. In contrast, mea-
suring particle positions via a detailed reconstruction of
the image accounts for the confounding sources of bias.
The reconstruction method PERI accurately measures
the particle positions, with an (x, y, z) error of (4e-4, 2e-
4, 3e-4) px or (0.04, 0.02, 0.03) nm, with the slight imper-
fection arising from a soft direction in the fit landscape
causing slow convergence [31]. Running the fit for ad-
ditional time slightly improves the image reconstruction
and the accuracy in the extracted parameters.

Adding noise at a signal-to-noise ratio of 30 affects
these results only slightly, as shown in figure 9. The er-
rors in the heuristic methods increase only moderately, as
most of their errors arise from systematic sources and not
from noise. And fitting the data to a generative model
performs well in the presence of noise, localizing parti-
cles in (x, y, z) with (0.02, 0.02, 0.03) px errors, at the
Cramer-Rao lower bound.
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FIG. 7: Position bias induced by a second nearby particle. Both centroid methods and fitting to a Gaussian have biases that
are a significant fraction of a pixel or greater, even out to separations of 5 pixels (500 nm). In contrast, PERI fits the particle
positions exactly (errors of a few times 10−4 pixels, due to fit convergence). The right panel is a zoom in of the left.

Method X-Shift X-Error Y-Shift Y-Error Z-Shift Z-Error

Centroid -0.016 0.32 0.0013 0.32 0.14 0.36

Gauss-fit -0.19 0.7 -0.086 0.56 -0.33 1.3

PERI -9.8e-05 0.00039 -6.1e-05 0.00018 -0.00028 0.0024

TABLE I: Biases in realistic, noise-free images. Biases
for all three methods on the realistic images along x, y, and
z, with the bias separated into an overall shift and the fluc-
tuations about that shift.

Method X-Shift X-Error Y-Shift Y-Error Z-Shift Z-Error

Centroid -0.063 0.41 0.008 0.37 0.16 0.48

Gauss-fit -0.16 0.69 -0.093 0.57 -0.37 1.3

PERI -0.0029 0.021 0.0018 0.017 -0.0034 0.03

TABLE II: Biases in realistic, noisy images. Biases for all
three methods on the realistic images along x, y, and z, with
the bias separated into an overall shift and the fluctuations
about that shift.

VII. CLOSING THOUGHTS

A. Why does a generative model approach work?

Why does the reconstruction-based approach of PERI
accurately measure particle positions while heuristic
methods perform so poorly in comparison? As we’ve al-
luded to throughout this document, PERI performs well
because it includes more of the possible systematic ef-

fects.

But there is a deeper reason why PERI includes more
of these possible systematic effects: we fit a generative
model, and we compare the fit to the data. By looking
carefully at the difference between the fit and the data,
we can understand whether or not our model is complete.
If it’s not complete, usually the fit residuals or the ex-
tracted parameters themselves provide a clue as to what
is missing. For instance, at early stages in the develop-
ment we thought that a relatively low-order polynomial
was sufficient to describe our spatially-varying illumina-
tion. However, our fit residuals oscillated with stripes in
the x-direction, and the particle radii oscillated in phase
with the stripes. Switching to a higher-order stripe-like
illumination smoothed out the residuals and removed
the stripe-like radii bias. Likewise, we initially thought
that a Gaussian approximation to the point-spread func-
tion would suffice to measure particle radii [32]. How-
ever, there were systematic variations in the particle radii
along the optical axis (z), and the residuals contained
strong rings around the particles. Allowing the width of
the Gaussian to vary with z provided a partial remedy,
but we still found significant radii biases and still saw
rings around the particles in the residuals. Switching to
an exact model of a physical point-spread function both
removed the rings in the fit residuals and significantly
improved our radii measurements. By reconstructing the
image, we were able to see which physical effects were
missing from our model and possibly causing systematic
errors. This process of model selection and model updat-
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FIG. 8: Position bias for a realistically generated image without noise (cross-section shown in upper-left panel). Even without
noise, effects such as a spatially-varying illumination, nearby particles, pixel bias, and the complex point-spread function cause
significant biases in the heuristic methods. In contrast, PERI accurately measures the x, y, and z positions.

ing is discussed in detail in the supplemental information
of ref. [7]. Once the source of the systematic error is
known, it is conceptually straightforward to implement
the additional physics in the generative model.

Moreover, with a generative-model framework, it is
easy to test whether additional physics that is too dif-
ficult to include in the model introduces biases – sim-
ply generate a realistic image with the additional effects
and analyze it with the generative model. For instance,
we PERI developers were worried that Brownian motion
might bias the extracted parameters, since during the im-
age exposure time particles diffuse by much more than
the Cramer-Rao bound for our images. As a random tra-
jectory, Brownian motion is too complicated to attempt
to fit in a generative model. However, it is comparatively
easy to generate an image of a diffusing particle. From
the generated data, we were able to discern that the bias
due to Brownian motion is extremely weak, many times
smaller than the noise floor from the Cramer-Rao bound
for typical confocal images [7].

In contrast, heuristic approaches provide no clear way
to completely incorporate sources of systematic errors or
even to know at what level they matter. How can one
guess from a list of positions that the uneven illumination
causes a slight bias? That even distant particles slightly
bias a particle’s position due to the long-tails of the point-
spread function? Even if something about the extracted
positions or prior knowledge of the image formation tips

off a researcher that there are systematic errors in their
data, how can a heuristic method accurately account for
them? For simple sources of bias, such as uneven illu-
mination, occasionally adding another component to the
heuristic such as fitting locally to a polynomial [30] can
improve the extracted positions. But correctly account-
ing for even these simple sources of bias is not straight-
forward – e.g. what order polynomial should be used?
Over what region of interest should it be fit? Worse, it
becomes increasingly difficult to compensate a heuristic
algorithm for complex sources of bias, such as aberration
due to the point-spread function. In contrast, a gener-
ative model allows a directed approach to incorporating
sources of systematic errors – based on physical knowl-
edge of the image formation – with residuals in the fit
announcing any additional sources of bias.

In light of this, the excellent performance of a recon-
struction over a heuristic arises mostly from practical rea-
sons. In principle, it could be possible to dream up a
heuristic method which accurately accounts for all con-
ceivable sources of bias, or to discover a post-processing
method which removes all those possible sources of bias.
However, it is near impossible to conceive of a heuris-
tic method which will be bias-free for all images, and
there is no rigorous way to check the quality of the esti-
mated positions against the raw image data. Conversely,
while any generative model for image formation will not
include every physical effect, the quality of the model



11

FIG. 9: Position bias for a realistically generated image with noise (cross-section shown in upper-left panel). Since most of the
problem with the heuristic methods is due to systematic biases, adding noise does not greatly worsen their results. Interestingly,
the errors in the heuristic featuring methods differ considerably from the noise-free dataset, by more than would be expected
from just the addition of noise. The noise worsens the accuracy of PERI to the 1-nm scale of the Cramer-Rao bound for this
image.

can be checked by comparing the difference between the
reconstruction and the raw image data. If the differ-
ence is not Gaussian white noise, then the model and its
measurements are suspect, and the model and its recon-
struction must be improved. If the difference is indistin-
guishable from Gaussian white noise or nearly so, then
the model and its measurements should represent reality
reasonably well. The generative model of PERI captures
most, but not quite all, of the signal in real microscope
images. This slight incompleteness in PERI’s model re-
sults in nm-scale biases in the extracted positions and
radii from real images [7].

B. Relative Displacements vs. Absolute Positions

While a heuristic method will not measure particle po-
sitions or particle separations with nanometer accuracy,
that doesn’t necessarily mean that a heuristic method
can’t accurately measure relative displacements of indi-
vidual particles over time. As we’ve shown above, most
of the sources of error in measuring a particle’s position
(or radius) arise from systematic difference in the im-
age formation. In general, these sources of systematic
bias will depend on the configuration of particles and
the properties of the optics. For most “reasonable” al-

gorithms, changing the sources of systematic errors will
continuously and smoothly change the reported particle
locations and properties, i.e. the bias b(x) is a smooth
function of the configuration of particles x. Thus, two
consecutive images with only small changes in particle
configuration between images will have almost identical
systematic errors, which will cancel when the displace-
ment is calculated [37]. In other words, if the true posi-
tion is xt(t) at time t, and the measured position xm(t) is
the true position plus a bias b(xt(t)), then the measured
relative displacement ∆xm ≡ xm(t1)− xm(t0) between
the positions at two separate times t1 and t0 is

∆xm = [xt(t1) + b(xt(t1))]− [xt(t0) + b(xt(t0))]

= ∆xt + [b(xt(t1))− b(xt(t0))] ,

where ∆xt is the true displacement. If the two config-
urations xt(t1) and xt(t2) are close, then b(xt(t1)) ≈
b(xt(t0)), and the measured displacement will be approx-
imately correct.

As an obvious corollary, test images with small relative
displacements of particles or test images of particles fixed
in place are not good measures of errors in particle local-
ization. Since real errors in measured particle positions
mostly arise from systematic sources of error, changing
the configuration of particles by a small amount doesn’t
significantly change any sources of systematic errors. As
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a result, using test images with little or no configura-
tional changes of particles to estimate localization errors
– such as repeatedly imaging particles fixed in place – will
severely underestimate the scale of systematic errors.

VIII. CONCLUSION

At this point, we hope you’re convinced that heuris-
tic methods give approximate results. But that doesn’t
mean that heuristic results aren’t useful. Fitting a com-
plete generative model to data takes many, many times
longer than running a simple heuristic like centroid iden-
tification. If you don’t need the accuracy, why waste the
time? Even if you do need the accuracy, it might be
worthwhile to analyze your data first with a fast heuris-

tic method. There is no point in wasting days to weeks
of computer time only to realize that your sample was
bad or the time resolution of your data was too slow.
Analyzing the data with a fast heuristic method first can
help you avoid missteps like these. However, if you want
or need highly-accurate positions from your data, then a
reconstructive generative model approach when correctly
used will provide them.
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