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A variety of electronic phases in solid-state systems can 
be understood by abstracting away microscopic details and 
refocusing on how Fermi surface topology interacts with 
band structure to define available electron states1. In fact, 
topological concepts are broadly applicable to non-electronic 
materials and can be used to understand a variety of seem-
ingly unrelated phenomena2–6. Here, we apply topological 
principles to origami-inspired mechanical metamaterials7–12, 
and demonstrate how to guide bulk kinematics by tailoring 
the crease configuration-space topology. Specifically, we 
show that by simply changing the crease angles, we modify 
the configuration-space topology, and drive origami struc-
tures to dramatically change their kinematics from being 
smoothly and continuously deformable to mechanically 
bistable and rigid. In addition, we examine how a topologi-
cally disjointed configuration space can be used to constrain 
the locally accessible deformations of a single folded sheet. 
While analyses of origami structures are typically dependent 
on the energetics of constitutive relations11–14, the topological 
abstractions introduced here are a separate and independent 
consideration that we use to analyse, understand and design 
these metamaterials.

For our purposes, we define origami-inspired mechanical meta-
materials as materials constructed from a series of torsional creases 
embedded within a thin sheet15. Each crease adds a degree of free-
dom (DOF) and increases the dimensionality of the configuration 
space. Each crease intersection, or vertex, generates geometric con-
straints and limits the available portion of configuration space16,17. 
A folded structure then occupies a single point in this configura-
tion space, and in the same way the Fermi surface topology defines 
nearby accessible electron states, the configuration space’s topology 
defines nearby accessible folding configurations. By introducing 
constraints on folding angles, the connectivity of the configuration-
space topology can be substantially altered. As such, this coupling 
between folding angles and configuration-space topology allows for 
unusual kinematic phenomena to emerge.

To understand the significance of this point, we should clearly 
distinguish the roles played by energetics and configuration-space 
topology in the context of origami-inspired metamaterials. We 
examine these differences through the lens of bistability, which is 
a common phenomenon to many origami structures16,18–21 (Fig. 1a).  
On the one hand, a purely energetic bistability appears when the 
configuration space is simply connected and there are two distinct 
local energy minima (Fig. 1a, left). Origami-inspired structures 
assembled from rigid panels and torsional springs can exhibit 
this type of energetic bistability (Fig. 1b)19,22. On the other hand,  

a purely topological bistability appears when the configuration 
space is no longer simply connected, and there exist distinct con-
figurations that are inaccessible from one another (Fig. 1a, right). 
Both energetic and topological bistabilities allow for multiple  
configurations. However, the origins of these bistabilities are quite 
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Fig. 1 | Distinguishing the roles of topological and energetic 
considerations in origami mechanics. a, Venn diagram illustrating the 
differences and relationship between energetic and topological bistability. 
An energetic bistability (left) arises when a simply connected configuration 
space (coloured region; energetic landscape indicated by colouring, 
with yellow being high-energy and blue being low-energy) contains two 
energetic minima (blue areas indicated by arrows). A topological bistability 
(right) arises when the configuration space is disconnected and no path 
exists that connects these two regions (isolated grey shapes). Many 
origami structures have their mechanics arising from both topological and 
energetic considerations (middle). In particular, a topological bistability 
defined by the crease geometry can be bridged by bending deformations 
that cost energy (blue-to-yellow coloured region connecting topologically 
isolated regions). b, An example of an origami-inspired pure-energetic 
bistability with multiple stable states accessible through changes to the 
folding angles in a simply connected configuration space. c, A common 
example of an origami structure whose unfolded and folded configurations 
are topologically disconnected when only considering crease DOFs16. 
The introduction of mechanical bending adds additional DOFs at an 
energetic cost that bridges the two configurations. d, An example structure 
considered here with a tuneable topological bistability. Credit: courtesy of 
S. Waitukaitis, P. Dieleman and M. van Hecke (b).
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different: an energetic bistability is rooted in the material proper-
ties that determine the cost of moving through configuration space, 
while a topological bistability is rooted in the connectivity between 
available configurations with no regard for material properties. 
While this theoretical abstraction is quite precise, many experimen-
tal origami structures convolve these effects. As a result, we often 
find topological bistabilities in crease patterns that are connected by 
hidden DOFs such as facet bending (Fig. 1c). In these cases, ener-
getics bridge a topological bistability through the interplay between 
crease geometry and the mechanics of bending (Fig. 1a, middle). 
Here, we broadly disregard energetic considerations relating to hid-
den DOFs, and instead focus strictly on the phenomena that emerge 
from the dynamics of configuration space topology. While physi-
cal materials will always have some amount of hidden DOFs that 
play into the bulk mechanical properties, the study of configuration 
space itself uncovers a variety of new insights regarding vertex–ver-
tex coupling and its ability to mediate non-local influence through 
dynamic constraints on the global configuration space.

Origami metamaterials are typically designed by tessellating 
individual units19,23,24. Before we address these more complex sys-
tems, we first analyse the configuration-space topology of a single 
vertex (Fig. 1d). For example, we extract a single vertex from a 
triangulated Miura-ori pattern25 parametrized by folding angle α 
and analyse its configuration space. The vertex has four prescribed 
creases with non-zero preferred rest angles (three mountain folds 
ϕ1, ϕ2, γ1 <  0 rad, and one valley fold γ2 >  0 rad) and two virtual 
creases (θ1, θ2) with zero preferred rest angle (Fig. 2a). A Miura-ori 
vertex without virtual creases has only one DOF, which we choose 
here to be γ1. Triangulating the folding pattern introduces two extra 
DOFs to the configuration space. For a range of α, we find the 
three-dimensional (3D) configuration space of the vertex is simply 

connected (Fig. 2b, left column), and the resulting kinematics dem-
onstrate smooth actuation (Fig. 2c, left column). As we decrease 
α, the configuration-space topography narrows, with all pathways 
between the initial and final configurations passing through a sin-
gle point in configuration space. This marginal actuation (Fig. 2b, 
middle column) is smooth but tightly constrained (Fig. 2c, middle 
column). As we continue to decrease α, the configuration topology 
becomes disconnected for θ2 larger than a critical value (Fig. 2b, 
right column; see Supplementary Information). For fixed θ2, we find 
that varying α breaks configuration-space homotopy26 (Fig. 2b, bot-
tom row), and the disconnection results in bistable systems (Fig. 2c,  
right). As demonstrated by the isolated vertex, configuration-space 
topology has both qualitative and quantitative effects for the real-
space kinematics (Supplementary Movie 1).

In a multi-vertex folding pattern, the configuration-space 
dimensionality is larger than the isolated vertex just considered. 
As a result, the folding of a crease in one region of the structure 
can change the global configuration-space topology, affecting the 
folding behaviour in another region of the structure. This inter-
play allows for the potential to design multiple distinct mechanical 
functionalities into the global behaviour of a single folding sheet. To 
illustrate this principle, we connected vertices in a series of concen-
tric Miura-ori-like rings (Fig. 3a), which bears similarities to artis-
tic origami structures27,28. Here, we consider only the vertices along 
the radial direction due to the azimuthal symmetry, and we permit 
creases to fold only in the prescribed directions. When the struc-
ture begins to fold from a flat sheet, each vertex initially has a con-
tinuously connected configuration space. As long as the innermost 
vertex remains unfolded, the entire structure remains only mod-
erately constrained and flexible. However, as the innermost ring 
folds, it constrains the neighboring ring to a configuration space 
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Fig. 2 | Configuration-space topology of origami-inspired mechanical metamaterials is determined by the underlying crease pattern. a, A triangulated 
Miura-ori vertex has four creases (three mountain folds in solid red and one valley fold in dashed blue) and two additional crease-like hinges that come 
from the thin sheet’s flexibility (grey lines). In this symmetric Miura-ori vertex, the plane angle α parameterizes the folding pattern. The photograph below 
shows the folded structure colour-coded by the above crease pattern. b, Configuration spaces for varying plane angle α and fold angle θ2. In each ⟨ ⟩θ γ,1 1

 
configuration space, the allowed configurations are grey and the forbidden configurations are white, similar to Fig. 1. As α and θ2 vary, the configuration-
space topology can change from one continuously connected region to two disconnected regions. The 3D diagram shows the configuration space of the 
right-most column and indicates the three cuts with monostable, separable and disconnected domains. c, The real-space 3D structures for the bottom row 
of the configuration spaces in b. The folding actuation varies from smooth (monostable) to rigid (bistable) as the configuration space goes from connected 
to disconnected (Supplementary Movie 1).
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with a topological bistability (Fig. 3b, γ θ⟨ ⟩,2 2,3 , disconnected green 
and red regions). As the structure is further folded, each vertex in 
the second ring moves through configuration space, and ultimately 
transitions across the topological bistability (Fig. 3b, moving from 
the green region to red region). In the mathematical abstraction 
of configuration space (Fig. 1a, right-most motif), this transition 
is strictly forbidden. However, in experimental systems, the tran-
sition becomes possible when hidden DOFs are invoked to bridge 
the topological gap (Fig. 1a, centre motif). When the second ring 
crosses the bistability transition, this newly occupied region of con-
figuration space constrains the third ring so that its previously con-
nected configuration space (Fig. 3b, upper γ θ⟨ ⟩,3 3,4  configuration 
space) now exhibits a topological bistability (Fig. 3b, lower γ θ⟨ ⟩,3 3,4  
configuration space). This process repeats across the entire struc-
ture; as each ring crosses a topological bistability, it generates con-
straints that introduce topological bistability in the next ring of the 
sequence (Fig. 3b, configuration-space diagrams read left-to-right). 
In practice, we therefore expect that a physical Miura-ori ring that 
contains hidden DOFs will undergo a sequential series of snaps as 
the structure is folded and each ring transitions through its respec-
tive topological bistability via energetic deformations not described 
by the configuration-space topology. We experimentally fabricated 
this structure (Fig. 3c,d), measured its force–displacement relation 
as the structure was folded (Methods), and confirmed the expected 
bulk phenomenology (Fig. 3e). Coexistence of the topologically 
connected and disconnected configuration spaces can be predicted 
and quantitatively compared with the measurements, which are 
most conveniently expressed by the crease angle ϕn,n+1 (Fig. 3f). 
While the crease pattern of this structure has apparent similarities 
with other cyclic origami designs29–32, the sequence of transitions 
through topological bistabilities shown here is a significant differ-
ence that distinguishes the kinematic behaviour from related flat-
foldable and nearly single-DOF structures. As such, these seemingly 
small differences in folding pattern demonstrate that vertex–vertex 
coupling has consequential significance by propagating topologi-
cally prescribed mechanical effects across the entire structure dur-
ing folding actuation.

In the Miura-ori ring structure, we showed how folding on one 
crease can alter the configuration-space topology elsewhere in the 
structure. Next, we consider the opposite scenario where the global 
configuration space is disjointed and actuation of a family of creases 
in one region has no effect in another. For this two-DOF actua-
tion to occur, the configuration-space topology will be separated 
into two domains that touch only at a single point. One domain in 
configuration space corresponds to half of the physical structure, 
while the other domain in configuration space corresponds to the 
other half of the physical structure. Thus, an actuation in one half of 
the structure is dimensionally reduced at the interface between the 
two structures; as the topology of configuration space involves two 
domains that touch at a single point, the beginning and end points 
of the path are collapsed onto this point in configuration space. 
This collapse of the path to a point creates a degeneracy that places 
no constraints on the allowed configurations within the other half 
of the structure. As such, any other simply connected path in the 
other domain is freely realizable, since it too will be dimensionally 
reduced to the same point in configuration space.

To illustrate this principle in a non-trivial tessellation, we con-
nect a series of vertices such that the parameter α varies in a pre-
scribed fashion for each column (Fig. 4a). If each vertex were 
isolated from the overall structure, there would be a set of inde-
pendent configuration spaces (Fig. 4b, grey region in each configu-
ration space diagram). However, vertex–vertex coupling imposes 
topological constraints (Fig. 4b, shaded pink region) on the accessi-
ble configuration space. If we actuate folding at the vertex described 
by the θ θ⟨ ⟩− − − −,5, 4 4, 3  configuration space (Fig. 4b, arbitrary trace 
within the topologically allowed region from the red circle to the 
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Fig. 3 | Coupling configuration-space topology with vertex–vertex 
interactions. a, Folding diagram for a Miura-ori ring and definition of the fold 
angles θn,n+1 and γn. The geometry consists of triangulated Miura-ori vertices 
(Fig. 2a) connected such that αn and βn =  π  −  αn vary as a function of indexed 
position along the ring radius. The resulting configuration space includes pure-
crease DOFs (red, blue lines) as well as facet-bending DOFs (grey lines) all 
operating at the same energy scale. b, For all θ1,2 <  0, the configuration space 
⟨ ⟩γ θ,2 2,3  is topologically disconnected. Configurations in the larger region 
(outlined green) lead to configurations at the next vertex ⟨ ⟩γ θ( , )3 3,4  that are 
topologically connected. Configurations in the smaller region (outlined red) 
lead to configurations at the next vertex ⟨ ⟩γ θ( , )3 3,4  that are topologically 
disconnected. This pattern of coupling configuration-space topology 
continues along the radial index n due to vertex–vertex interactions. c,d, An 
experimentally fabricated Miura-ori ring (c) is compressed using a controlled 
strain measurement device (d). The mechanical actuation drives the structure 
through series of topologically disconnected configurations depicted in the 
lower row of b. e, The compressive elastic modulus of the Miura-ori ring as 
a function of normalized strain εxx/εc, where the critical strain εc =  0.75 and 
corresponds to the strain at which the entire sheet snaps into a cylindrical 
wall, is obtained from the force–strain measurement (see Supplementary 
Information). The modulus shows a sequence of drops in its value, each of 
which corresponds to a bistability snap. The blue line is a ten-point boxcar 
average of the measured modulus value and the shaded band is the ten-point 
boxcar standard deviation. f, Quantitative image analysis measures the 
folding angle φn,n+1, which correlates with the configuration-space topology 
of each vertex. At the lowest measured strain, vertices with n ≤  4 have been 
driven into the topologically disconnected configuration spaces, whereas 
vertices with n >  4 still have topologically connected configuration spaces. 
The solid line shows the boundary between the vertices with topologically 
connected configuration spaces and the vertices with topologically 
disconnected configuration spaces (see Supplementary Information).
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blue cross), then the neighbouring vertices to the right will undergo 
an actuation within their own topologically allowed configuration 
space. In the configuration space θ θ⟨ ⟩− ,1,0 0,1 , the end points of 
these paths collapse onto a single point that allows for a range of 
configurations for the vertices further to the right (Fig. 4b, regions 
of configuration spaces within the green dashed lines). In fact, the 
configuration space θ θ⟨ ⟩,3,4 4,5  is essentially unconstrained by the 
path in the θ θ⟨ ⟩− ,1,0 0,1  configuration space, and any effects from 
actuation in the left half of the tessellation are suppressed in the 
right half of the tessellation. In essence, the configuration spaces 
on the left and right portions of this structure are disconnected. 
We experimentally fabricated this tessellation and found that we 
could independently actuate the left and right halves as expected 

(Fig. 4c,d). Hence, vertex–vertex coupling in this structure allows 
us to decouple the configuration-space topology in a manner that 
allows for localization of real-space kinematics. Importantly, this 
design can be treated as a modular structure and combined with 
the Miura-ori ring to create larger composite structures where the 
configuration-space constraints act locally on each module.

Origami-inspired metamaterials have a number of desirable 
features including single-sheet fabrication, compatibility with well-
established self-assembly methods, and an essentially infinite design 
space associated with the rich variety of folding patterns. Here, we 
have added to this list the capacity to design kinematic proper-
ties from the configuration-space topology that can be modularly 
assembled as constituents of a larger structure. This approach to 
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metamaterial design produces structures with regions that are phys-
ically attached to one another but kinematically isolated through 
constraints on their configuration space. In applications, the ben-
efits of our findings allow for the design of structures insensitive 
to real-world manufacturing defects and tolerances23,33,34. This flex-
ibility can be potentially achieved by incorporating known imper-
fections as added volume into the analysis of configuration-space 
topology, ensuring the folding actuations are as intended. From this 
perspective, monostability and bistability can be robustly designed 
even in the presence of parasitic compliance. With the results pre-
sented here, it becomes possible to design topologically constrained 
metamaterials with well-defined properties even in the presence 
of irregular or unpredictable forces. Such devices are particularly 
exciting at the meso- and microscale for applications in biological 
fluid flow and tissue engineering.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0150-8.
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Methods
3D model of origami structures. A mathematical model of each experimentally 
generated origami structure is formulated for numerical simulation and 3D 
reconstruction. The model is composed of the vertex coordinates and the 
constraints imposed by the crease length between neighbouring vertices. 
Given a 2D projection of all the vertex positions (xi, yi), the zi coordinates 
in the third dimension are obtained by minimizing a penalty function28 
V(z) =  ∑ − + − + − −′ x x y y z z l[ ( ) ( ) ( ) ]k

i j i j i j i j ij2 ,
2 2 2 2

, where lij is the length of the 

crease between two connected vertices of indices i and j on the triangular crease 
lattice. The z coordinates can thus be obtained by solving the associated ordinary 
differential equation array as 

.
zi =  − k ∑ − + − + − −′ x x y y z z l[ ( ) ( ) ( ) ]j i j i j i j ij

2 2 2  

^ ⋅ ̂r zij , where the unit vector ̂rij =  − + − ̂+ − ̂�x x x y y z z z z(( ) ( ) ( ) )i j i j i j

/ − + − + −x x y y z z( ) ( ) ( )i j i j i j
2 2 2  and k is the virtual spring constant for perturbing 

the crease lengths. The ambiguity due to mountain–valley crease alignments is 
avoided by shifting the vertices up or down by a small amount in the z direction as 
the initial condition.

Configuration-space analysis. The configuration space of each vertex is described 
by the accessible folding angles of the connected creases. In the case of a degree-6 
vertex, the configuration space is 3D. Any potentially foldable structure is 

realized by rotating the creases through those three independent folding angles. 
The foldability is validated by the criterion that the distance between any pair 
of transformed vertices cannot be greater than that in the flat unfolded state for 
any inextensible sheet. Self-intersections of the structures are also identified and 
excluded from the configuration space (see Supplementary Information). The 
numeric code for the configuration-space analysis is made available for sharing 
through Mathematica (https://www.wolframcloud.com/objects/6a35243a-e7ba-
479f-af5d-0d77e13f467b).

Experiments. The origami structures described in the main text were made from 
a flat paper sheet (Stardream Metallics 81lb) with measured thickness τ =  0.16 mm 
and flexural rigidity D =  4.0 ×  10−4 N m (ref. 16). The crease lines were perforated 
by a laser cutter and weakened manually by flat-folding along the perforation 
lines in both directions. Folding kinematics and vertex locations were recorded 
by a USB digital camera (Imaging Source DFK), which was calibrated to remove 
perspective and lens distortions. The (x, y) coordinates of the vertices were fed into 
the aforementioned mathematical model to extract the z positions of the vertices. 
3D configurations of the folded origami sheets were then reconstructed and plotted 
using MATLAB.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon request.
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