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Nonlinear mechanics of thin frames
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The dramatic effect kirigami, such as hole cutting, has on the elastic properties of thin sheets invites a study of
the mechanics of thin elastic frames under an external load. Such frames can be thought of as modular elements
needed to build any kirigami pattern. Here we develop the technique of elastic charges to address a variety
of elastic problems involving thin sheets with perforations, focusing on frames with sharp corners. We find
that holes generate elastic defects (partial disclinations), which act as sources of geometric incompatibility.
Numerical and analytic studies are made of three different aspects of loaded frames—the deformed configuration
itself, the effective mechanical properties in the form of force-extension curves, and the buckling transition
triggered by defects. This allows us to understand generic kirigami mechanics in terms of a set of force-dependent
elastic charges with long-range interactions.
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I. INTRODUCTION

Classical elasticity is a scale-free continuum theory [1] and
yet scale-dependent features are routinely observed in elastic
materials [2]. The elastic theory of thin plates and shells [3] is
a good example: the plate or shell thickness, compared to the
overall size, is a purely geometric dimensionless parameter
controlling both the structural bendability and the degree of
nonlinearity. One often finds complex mechanical behavior
and rich pattern formation in these structures. Thin sheets, for
example, display compressional buckling [1], wrinkling [4,5],
and crumpling [6], all as a result of the interplay between the
external load and the sheet thickness.

Non-Euclidean thin sheets form another class of elastic
solids characterized by multiple length scales [7]. Here the
(preferred) curvature of the sheets provides an additional
length scale. Non-Euclidean structures are widely prevalent
in nature and play an important role in determining the
morphology of flowers [8,9], leaves [10,11], growing tissues
[12], and seed pods [13,14]. This has inspired the design of
mechanically responsive materials [15,16] and actuators [17].

A common feature in all these examples is the presence
of multiple widely separated length scales that affect both
mechanics and structure. Such multiscale behavior can also
show up in the scaling of the energy of the system with system
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size [18]. From this point of view, kirigami—the Japanese
art of cutting and folding paper—is a powerful means of
manipulating the geometry and the intrinsic length scales of
an elastic sheet. We find that the presence of holes provides a
new handle for controlling both the onset of instabilities and
the effective mechanical response. The conventional linear
response of the planar state transitions to a mechanically softer
nonlinear response as the applied force increases as a result of
force-induced buckling of partial disclinations. The effective
elastic properties that arise here may be tuned by varying
the geometry of the holes. For large loads the displacement
eventually reaches the order of the hole size itself and we
find a crossover to a stiffer, but still nonlinear, response.
This pattern of mechanical responses, passing from a linear
regime through an instability-induced softening to eventual
nonlinear stiffening, is seen in other systems as well, such
as the force-induced denaturation of double-stranded DNA
[19], metal alloys, solid polymeric foams [20,21], and nematic
elastomers [22].

The properties noted above have recently been exploited
to generate mechanically actuated 3D configurations [23–26]
and highly stretchable devices [27–29]. Blees et al. [30]
successfully demonstrated that kirigami can be performed
at the extreme nanoscale to modify the effective mechani-
cal properties of atomically thin graphene in the presence
of strong thermal fluctuations. For small feature sizes, the
geometry and deformation of a nanoscale graphene kirigami
structure might modify its electronic transport properties as
well [31]. Lattice kirigami structures have also been used,
although without direct reference to their mechanics, to create
complex 3D macrostructures [32,33], much in the spirit of
origami-based designs. Unlike previous studies of mechanical
metamaterials involving in-plane instabilities of periodically
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FIG. 1. Kirigami and frames. (a) A periodic kirigami pattern composed of square frames. (b) The response of the pattern in (a) to a
large deformation when stretched along the diagonal x direction, enabled by the escape of the frame elements into the third dimension.
(c) An individual square frame of size L, frame width w, and hole dimension H = L − 2w, forming the building block of the pattern in (a).
(d)–(f) Different locally stable configurations of a square frame subjected to an external force along its diagonal (in the horizontal direction),
distinguished by the relative orientations of the four inner corners: (d) The left and right inner corners are curved up and down, respectively
(denoted by + and −, respectively), whereas the top and bottom inner corners point to the left (as shown by the red needles normal to the
surface and denoted by L. This configuration is thus denoted by + : L/L : −). (e) The left and right corners both point up here, while the top
and bottom corners point in opposite directions, hence denoted by + : L/R : +. (f) Here both the left and right corners once again point up,
but the top and bottom corners point in the same direction, hence + : L/L : +. The remaining configuration + : L/R : − is not stable at this
hole size.

perforated thick sheets [34–38], we shall focus primarily on
thin elastic sheets that easily buckle into the third dimension,
as is most relevant for kirigami. Given the possibilities now af-
forded by the design of kirigami metamaterials, an important
question remains: What kinds of mechanical properties can be
achieved by the techniques of kirigami? In this regard there is
previous work studying the mechanical response of arrays of
slits [24,29,39] and the possibility of topologically protected
floppy modes in faceted kirigami structures [40], though the
full problem is far from solved.

In search of general principles to organize the mechanics
of kirigami structures, we simplify by dividing the elastic
problem into two simpler problems: the mechanics of a single
frame [as illustrated in Fig. 1(c)], which we view as a modular
building block for more complex arrays [Fig. 1(a)], and the
interaction between coupled frames. A detailed analysis of
many interacting frames will be left to the future. Even the
simple setting of a single frame under load is sufficient to
uncover a number of general mechanical consequences of
kirigami. In particular, we demonstrate that holes under load
act as sources of geometric incompatibility, which in turn
drive buckling. By mapping the mechanics of a pulled frame
to that of a non-Euclidean plate, using the formalism of elastic
image charges, we are able to understand both qualitative and
quantitative mechanical consequences of modifying the origi-
nal geometry. We then show through comparisons with finite-
element simulations that this approach to kirigami mechanics
is an improvement on simple linearized plane-elasticity meth-
ods. This paper also serves as a theoretical companion to Ref.
[41], where we compare our results against experiments on
pulled paper frames.

The paper is organized as follows. We start with some
simple tabletop demonstrations in Sec. II to illustrate the qual-
itative mechanical features of square frames. Just as electric
charges tend to localize near sharp corners in conventional
electrostatics, the sharp corners of square frames localize
strain-dependent elastic charges in the form of buckled and
unbuckled partial disclinations. In Sec. III we present the the-
oretical formalism of image elastic charges within a geometric
framework of elasticity. We then discuss the mechanics of
both planar (Sec. III A) and buckled (Sec. III B) frames. In
Sec. IV we make a quantitative comparison of our theoretical
predictions from Sec. III with numerical simulations and
elucidate the detailed geometric dependencies in both the
mechanical force response and the instability threshold.

II. TABLETOP DEMONSTRATIONS

Motivated by the kirigami pattern shown in Fig. 1(a),
we choose our prototype frame geometry to be a square
sheet with a centered square hole in it, whose edge length
(L), hole size (H ), and frame width [w = (L − H )/2] are
shown in Fig. 1(c). Pulling on such a square frame along
diagonally opposite ends, the first point we note is that the
frame readily buckles out of the plane but can adopt multiple
configurations in doing so. In Figs. 1(d)–1(f) three locally
stable configurations of a diagonally loaded square frame are
shown, distinguished just by the relative orientations of the
buckled inner corners: Corners with angles less than π/2
in the stretched configuration (before buckling) are positive
partial disclinations and can either buckle up or down (±).
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Corners with angles greater than π/2 in the stretched config-
uration before buckling are negative partial disclinations, and
the associated square plaquettes can tilt either to the left or
right (L or R). The configurations in Figs. 1(d)–1(f) can thus
be compactly denoted as + : L/L : − (d), + : L/R : + (e),
and + : L/L : + (f).

Here we primarily focus only on the global energy-
minimizing configuration for a given strain and the associated
energy landscape of the planar and buckled configurations
for varying hole sizes and loading conditions. We neglect the
effects of strong thermal fluctuations uncovered in Ref. [30].
In principle, for the square frame, there could be 24 = 16 dif-
ferent buckled configurations in all, with many related by rota-
tions and reflection symmetries. The relative parity of oppos-
ing corners (+ versus − and L versus R) completely classifies
the four distinct buckled configurations, up to symmetry-
related degeneracies. However, the configuration + : L/R : −
(and its symmetry related cousins) is unstable in the param-
eter range we study. The other three locally stable ones are
shown in Figs. 1(d)–1(f). We shall only briefly address some
features of multistability in pulled frames and defer a more
detailed treatment to future work. As an aside, we do note
that the presence of such multiple local energy minimizers
(metastable states) and their associated degeneracies would
play an important role when thermal fluctuations are present,
and might have nontrivial consequences for, say, the free
energy of thermalized kirigami microstructures under stress.

There are three main observations that drive our work.
First, as demonstrated in Figs. 1(b) and 1(d), the presence of
a hole, or an array of holes, significantly softens the response
of a frame to external forces. Quantifying this softening as a
function of frame width, or equivalently hole size, is an im-
portant prerequisite for a thorough understanding of kirigami
mechanics. Second, we find that the frame localizes curvature
in the vicinity of the inner corners of a hole, much like
that of a conical surface. Similar singularities and softened
force-response have been observed previously in the buckling
of other shapes such as slits [24,39]. Third, for small hole
sizes the frame does not buckle, implying that there is a
threshold hole size for buckling (at a fixed displacement).
Alternatively, the buckling transition may be triggered by
varying the external diagonal displacement, for a given hole
geometry. We shall denote the critical displacement for the
buckling transition in a fixed geometry by δxc. Guided by
these observations, we now proceed to develop a theoretical
framework which naturally captures and emphasizes these
features of frames and kirigami.

III. THEORETICAL FRAMEWORK

The mechanics of an elastic frame is governed by an elastic
energy functional composed of a stretching term depending on
the the 2D Young’s modulus Y and Poisson ratio ν, as well as
a bending term proportional to the bending modulus κ . For a
Hookean material, both the stretching and bending terms are
quadratic in the stress (σ ) and extrinsic curvature (b) tensors,
respectively. When minimizing the total energy of the system,
the equilibrium equations thus obtained can be significantly
simplified by using the Airy stress function χ . The resulting

minimization equations read in covariant form [42]

1

Y
��χ = −K, (1a)

κ�tr(b) = σμνbμν. (1b)

Here K is the Gaussian curvature of the configuration
adopted by the surface and is proportional to det(b). Note that
these equilibrium conditions reduce to the standard Föppl-von
Kármán (FvK) equations [1] upon geometrically linearizing
the 3D configuration in a Monge patch.

The two elastic moduli together define a characteristic
length scale, commonly interpreted as the effective thickness
of the frame t ≡

√
12(1 − ν2)κ/Y , with ν the plate Poisson

ratio, typically within an order of magnitude of the actual
thickness of the sheet. In the following we shall use the
term “thickness” to mean effective thickness. The relevant
dimensionless parameter that quantifies the ease with which
an elastic sheet can bend rather than stretch is the FvK number
(γ ). For a frame, as will be explained below, the appropriate
definition of γ involves the frame width w as the macroscopic
length scale, which gives γ = Yw2/κ . When γ � 1, the
frame typically stretches in-plane, while for γ � 1, it more
easily trades stretching energy for bending energy and buckles
out of plane instead.

For small displacements, we are in the pre-buckled regime
(δx < δxc) and the frame remains planar (b = 0 and K = 0).
As discussed below, the buckling threshold δxc is determined
by the FvK number γ . The biharmonic equation for χ along
with the appropriate boundary conditions (e.g., vanishing
normal stress) completely determines the stressed state of a
pulled frame. We reinterpret the solution of this problem in
terms of image charges in the following section.

A. Planar frames

The primary complication in solving the plane stress prob-
lem is the presence of a nontrivial hole geometry and the
corresponding boundary conditions that come with it. At this
stage we note that the problem can be solved formally using
the method of image charges, often used for solving the
Laplace equation in the context of classical electromagnetism
[43]. In electrostatics, the electric charge density provides a
source for the Coulomb potential (via Gauss’s law) which
makes them dual to each other as generalized conjugate
variables. Equation (1a) tells us that the Airy stress function χ

and the Gaussian curvature are related to each other in a sim-
ilar fashion [44]. This identification allows a straightforward
generalization of the electrostatic image charge procedure to
elastic problems. The basic idea, a kind of variational ansatz
for the frame configuration, is to guess a distribution of image
“charges,” now interpreted as sources of Gaussian curvature.
This distribution determines the stress function which must
also satisfy the appropriate boundary conditions on the hole.
Equation (1a) is then modified to be

1

Y
��χ = KIm − K, (2)

where KIm is the image charge induced within the hole,
realized by distributing real elastic charges on its boundary.
For the planar case, the Gaussian curvature vanishes (K = 0).
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The distribution of image charges can then be expanded in
multipoles [45]. A generic hole requires an infinite number
of multipolar terms. Topological constraints, though, require
that the monopole and dipole terms in KIm, corresponding to a
global disclination and dislocation, respectively, must vanish
[46]. The lowest order allowed multipole in KIm is therefore
generically the quadrupole [45]. The simple problem of a cir-
cular frame under pure external shear can thus be reinterpreted
as a combination of fictitious charges at the origin and at
infinity, with a solution which follows from symmetry (see
Appendix A). For a more complicated geometry and boundary
conditions, such as a square hole with sharp corners pulled
along the diagonal, one has to include higher order multipoles,
though the quadrupole is often still the dominant contribution
[47]. Including all the multipolar image charges is entirely
equivalent to the original elastic problem and sufficient to
satisfy the relevant boundary conditions. Provided the hole is
not too big [47], this formulation characterizes perforations in
an elastic sheet under stress as sources of geometric incom-
patibility.

Since Eq. (2) is linear in χ for planar frames, we can
superpose the different multipolar image charges to obtain a
KIm that satisfies the appropriate boundary conditions at the
edges of the frame. The displacement field �ui and the stress
tensor σ i generated by the ith elastic charge λi , is then

uμ =
∑

i

λiu
μ

i , (3a)

σμν =
∑

i

λiσ
μν

i . (3b)

Note that �ui and σ i are explicit functions of the individual
image charges [48] and different hole geometries only corre-
spond to including a different number of terms and different
charge magnitudes in the above sums. The functions �ui and
σ i can be found separately for each multipole as shown in
Ref. [44]. Here these charges can be thought of as physically
motivated variational parameters, one for each force or dis-
placement applied along the frame diagonal.

The elastic energy in a domain �, including forces at the
boundaries, is then

E = 1

2

∫
�

Aμνρσ σμνσ ρσ dS −
∮

∂�

Tμuμd�. (4)

Here A is the elastic tensor [7], � is the domain of the entire
frame, and T is the boundary force. Writing the stress and
displacement fields in terms of the elastic charges yields

E =
∑
i,j

Mijλiλj −
∑

i

miλi, (5)

with

Mij = 1

2

∫
�

Aμνρσ σ
μν

i σ
ρσ

j dS, (6a)

mi =
∮

∂�

Tμu
μ

i d�. (6b)

Since all the σ i and �ui are known explicitly, given a specific
frame geometry, we can integrate over the domain � and
obtain an expression for the matrix M and the vector m.
After minimizing the energy with respect to the image charges

λi , simple linear algebra leads to an explicit formula for the
magnitude of the ith charges, namely,

λi = 1

2

∑
j

M−1
ij mj . (7)

For a circular frame (i.e., an annulus) under pure shear, this
method leads to the known exact result [49], with all the
charges except the quadrupole and hexadecapole vanishing.

The more complex setup of a square frame with two
localized tensions f acting on diagonal corners gives rise
instead to an induced fictitious quadrupole charge,

Q(f ) = f L

Y
φ1(w/L). (8)

Here φ1 is a dimensionless rational function of the geometry,
which diverges as w → 0, and vanishes as w/L → 1/2. The
divergence as w → 0 results from the softness of a very
narrow (square) frame under fixed tension. For the quite
different setup of a fixed displacement of the two diagonal
ends of the frame, the quadrupolar charge becomes

Q(δx) = L2φ2(w/L)
δx

L
. (9)

In this case the geometric function φ2 remains finite when
w → 0, and vanishes for w/L → 1/2, as expected for an in-
tact sheet (w = L/2). An explicit derivation of the geometric
functions φ1,2 is given in the Supplemental Material [50]. Sim-
ilar expressions hold for higher order charges as well. Keeping
the two lowest order image charges already yields an accurate
approximation to the plane stress solution obtained numeri-
cally for a wide range of hole sizes (see Fig. 3 and Sec. IV).

Solutions parametrized with just a few image charges be-
come more accurate for weak charges; the regime of validity
of the approximation depends on the specific protocol of the
prescribed deformation. For a given narrow frame (w/L �
1/2), the corresponding charge induced by a prescribed force
will be larger than that induced by a prescribed displace-
ment. A small prescribed displacement, for example, results
in charges that decrease as the frame narrows. We expect
(see Appendix A) that for a fixed prescribed force, the pure
quadrupole approximation is valid for 0.125 � w/L < 0.5
(meaning the energy deviates from the exact value by less than
5%). Although we find the quadrupole approximation quite
helpful for physical intuition, it will not in general satisfy
the exact boundary conditions; for that, one would need to
account for all possible multipoles or resort (as we do later in
Sec. IV) to numerical calculations.

Our approach also allows us to compute the deformed
shape of a frame under load. By substituting the image charges
from Eq. (7) into Eq. (3) we recover the displacement field.
In Fig. 2 we use these displacements to plot configurations
of planar square frames of different frame widths subjected
to the same fixed force applied along the diagonal. The color
encodes the stretching energy density. Although the force is
constant, the resulting displacement varies dramatically as we
vary the frame width: w/L = 0.25 (a), 0.2 (b), and 0.1 (c) (see
Fig. 2).

The analogy with electrostatics provides simple interpre-
tations of various features of these image elastic charge as
well. The hole plays a role of a conductor in electrostatics.
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FIG. 2. The deformation of a square frame constrained to be
planar and subjected to a fixed force f/(YL) = 0.1 along the di-
agonal (from the lower left to the upper right) with fixed L = 1 but
varying hole size H = {0.5, 0.6, 0.8}, as calculated by Eq. (7). The
configurations are colored by the energy density on a linear scale
from blue (low) to white (high). Although the force is fixed, for
an appropriate choice of the effective thickness, and if allowed to
escape into the third dimension, configuration (a) remains planar,
(b) is planar at the buckling threshold, and (c) is beyond the critical
force threshold for buckling. Note that the interior angles of the
frames deviate from π/2 with the application of the force.

Just as induced electric charges concentrate at regions of high
curvature on conductors in an external electric field, the elastic
charges induced within a hole in response to an external load
tend to localize at the sharp corners of the hole. In the planar
case this is evident in energy density plots of Fig. 2. In the 3D
case, as we shall see in the next section, this elastic charge
localization leads to curvature localization upon buckling,
explaining the observations from the tabletop experiments.

Before moving to the buckled case let us estimate the
mechanical response of the frame. The geometry of the square
hole allows the induced quadrupolar charge to fractionalize
into four partial disclinations that localize at each corner,
alternating in sign. Given this localization, the relevant length
scale governing the energy of a single partial disclination is
the corner plaquette size ∼w. We therefore estimate the total
energy as that of four (unbuckled) corner disclinations:

E2D (δx) ≈ 4
Ys2

32π
w2 − f δx, (10)

where [using Eq. (9)]

s = Q(δx)/H 2 = φ2(w/L)
L2

H 2

δx

L
≡ �(w/L)

δx

L
(11)

is the partial disclination charge. Minimizing the energy with
respect to δx, the effective spring constant f = keffδx of a
frame that remains planar is

keff = const × Y

(
w

L

)2

�(w/L)2. (12)

We expect that the function �(w/L) is of order unity in
the range w/L � 1/8 where the quadrupole approximation is
valid.

In summary, we have shown in this section that the solution
to the elastic problem of a planar frame can be approximated
using image elastic charges formed in the interior of the hole
to approximately enforce boundary conditions. These image
charges are a mathematical representation of the real elastic
charges distributed along the boundary of the perforation, as
discussed in Appendix A. Depending on the hole shape, the

induced elastic charges migrate toward highly curved regions,
as suggested by the analogy with electrostatics.

B. Buckled frames

An elastic sheet embedded in a medium may also escape
into the third dimension. Under load it will first stretch and
then buckle beyond a threshold displacement δxc. Let us
take the case when bending is energetically much easier than
stretching for a given area sheet, (γ � 1). In this regime
the buckled configuration will be approximately stretchless.
Generic configurations will be intrinsically curved with spa-
tially inhomogeneous Gaussian curvature, particularly on the
boundaries and near the corners. Thus, K 
= 0 in Eq. (2)—see
Appendix B for an illustration of distributed Gaussian cur-
vature over a boundary under load. The stress-free boundary
conditions on the hole can once again be satisfied by a collec-
tion of image charges, resulting in a nonvanishing KIm as well.
Because of Eq. (2), we expect the geometric and elastic charge
distributions along the boundaries to approximately cancel
to minimize energy. This requires K = KIm: the Gaussian
curvature of the buckled sheet screens out the sources of stress
generated by the elastic charges induced on the boundaries.
These elastic charges are essentially the same as those for the
planar problem treated above. This screening effect resembles
that found for the buckling of topological defects in crystalline
membranes (see Ref. [51]).

Since screening charges localize near the inner corners of
the frame, we expect that each fractionalized partial disclina-
tion deforms the sheet on a scale of size w (just as in the planar
case). If w/L � 1/4 the partial disclinations are separated by
distances larger than w and we expect their interactions to
be negligible. In this case, we can estimate the energy of the
3D buckled configuration simply as a superposition of conical
energies at each corner. In addition, if w/L � 1/8, we find
(see below) that the solution is well-approximated by a single
quadrupole and we can neglect higher multipole contributions.
This allows us to distinguish three main geometric regimes: (i)
w/L > 1/4—small hole sizes where the interaction between
fictitious partial disclinations is important; (ii) 1/8 < w/L <

1/4—intermediate hole sizes where the deformation is well-
described by a single fictitious quadrupole and noninteracting
partial disclinations and (iii) w/L < 1/8—large hole sizes
where higher order multipoles become important.

Small holes have a minor effect on the elastic softening
of a single frame. Very large holes become very flexible to
bend both because they have less material and because of their
shape. In the large hole regime, the frame is more akin to
a thin elastic ribbon joined at its ends (see Ref. [41]). The
intermediate hole size regime, probably the most accessible
for exploring kirigami mechanics, will be our main focus
below.

The energy of the buckled 3D configuration when sub-
jected to an external force f is estimated following arguments
similar to those used in the planar case. Unlike the planar
case, however, the buckled quadrupoles controlling force-
extension curves have multiple locally stable configurations
corresponding to various combinations of up-down buckling
of each partial disclination (see Fig. 1). Each of these states
may have a different energy. The energetic difference between
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the solutions originates from the interactions between the
buckled partial disclinations, which we neglect to a first ap-
proximation in the intermediate hole regime where the partial
disclinations are well separated. Therefore, as in the planar
case, we estimate the total energy as the sum of the conical
buckling cost localized at each corner [51–53]

EB (δx) = E2D (δxc ) + 4κ ln (w/rc )

× (c1 s + c2 s2 + · · · ) − f (δx − δxc ), (13)

where rc is a microscopic core size regularizing the conical
singularity, and is expected to scale linearly with the effective
frame thickness t . Here the first term is the stretching work
done up until buckling. The numerical constants c1, c2 de-
pend on the precise mode by which each partial disclination
buckles. The partial disclination charge s is given as before
by Eq. (11). Note the logarithmic dependence of the energy
on the frame width w, which is typical for conical surfaces,
and is a direct consequence of the curvature localization. We
emphasize that the above energy estimate is valid only in the
post-buckled regime (δx � δxc).

Upon minimizing Eq. (13) with respect to δx, we find
the force-displacement relation f (δx). This gives an effective
spring constant keff = df/dδx of the form

keff = const × κ

L2
�(w/L)2 ln (w/rc ). (14)

We can estimate the scaling relations associated with the
buckling transition of a frame under load more precisely. The
buckling transition can be crossed either by varying the hole
size for a fixed external force or by increasing the force at
fixed frame width. Since the buckling of a frame is controlled
by the buckling of partial disclinations, we can take over
results from the buckling of topological disclinations [51]. In
Ref. [51] it was shown that a single disclination of charge s

in a finite crystalline membrane (of linear size ∼R) buckles
only when the defect charge exceeds a critical threshold
|sc| = γc/γ with γc ≈ 120. Note that γ = YR2/κ → ∞ as
R → ∞ which means the threshold vanishes and all topo-
logical disclinations buckle in the thermodynamic limit. In
our case, this analysis yields a partial disclination charge
s = �(w/L)δx/L, which clearly depends on the prescribed
displacement as well as the frame’s geometry. This geometric
dependence of the charge on w/L has no analog in the case
studied in Ref. [51]. After re-expressing the critical displace-
ment in terms of the critical charge, we obtain

δxc

L
= γ frame

c κB

Yw2�(w/L)
= γ frame

c t2

12w2�(w/L)
, (15)

where by γ frame
c we denote the numerical value γc correspond-

ing to the buckling of frames.
To summarize the predictions of our theoretical analysis,

we find that within the intermediate hole size regime the
deformation of a frame can be accurately described using a
fictitious quadrupole, whose spatial distribution depends on
the precise shape and geometry of the hole. For a square hole
the screening defects are localized near the sharp corners, a
phenomenon that is well known in electrostatics and is consis-
tent with the tabletop demonstration presented in the Sec. II.
This allows an estimation of the effective spring constants as

FIG. 3. (a) Planar and (b) buckled energy-minimizing configura-
tions obtained by numerical minimization of a frame of side length
L = 1, width w = 0.45 and prescribed displacement δx/L = 0.05.
The frames are colored by their energy density. The scaling of the
color-bar is chosen to highlight the prominent features of the energy
distribution in both configurations. The black dotted lines in (a)
are the frame boundaries in the quadrupole-hexadecapole approx-
imation described in the text. Note the close agreement between
these dotted boundaries and the actual planar configuration computed
numerically.

well as a quantitative description of the geometry-dependent
scaling of the buckling transition.

IV. NUMERICAL SIMULATIONS

To test the quadrupole and hexadecapole approximations
for frames of intermediate size, we now analyze the prob-
lem numerically. We perform finite element simulations to
numerically minimize a discretized version of the elastic
energy functional (as used, for example, in Refs. [14,54]). A
related method was used in Ref. [51]. For each frame width a
triangulation of the square frame is generated, and the energy
is numerically minimized for different material parameters
and external displacements.

In Fig. 3(a) we show a representative equilibrium configu-
ration of a planar frame under a fixed diagonal displacement.
The frame is colored by its elastic energy density, confirming
our expectation of energy localization near the inner corners.
The black dotted lines plotted on top of the configuration’s
boundaries are the analytical calculations for the deformed
frame, using the the two lowest-order multipoles, with the
quadrupole and hexadecapole charges as variational param-
eters. Note the good agreement. Although we have not suc-
ceeded in producing the analog of the quadrupolar approxi-
mation for the buckled states, the corresponding disclination
charges nevertheless provide insight into the buckled state.

In Fig. 3(b) we present the configuration of the same frame
as before, only now after allowing buckling. In this case we
confirm that the stretching energy content in the system is
indeed negligible compared to the bending energy after buck-
ling. Our observations from the tabletop demonstration are
also confirmed—we find clear evidence of energy localization
reflecting the localization of curvature near the inner corners.
This feature appears naturally in our analysis as the image
elastic charge fractionalizes in the presence of sharp corners,
with partial disclinations localizing at the inner corners of
the hole. To test this idea further we repeated the simulation
for the buckling of triangular and circular frames, subjected
to the forces shown in Fig. 4. We find that in the triangular
case the induced elastic charges on the boundary are only
partly fractionalized. One positive disclination monopole is
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FIG. 4. Three-dimensional energy-minimizing configurations af-
ter buckling, obtained by a numerical analysis of the full elastic
problem. (a) Triangular and (b) circular frames subjected to uniaxial
forces applied at opposite ends. The screening charges responsible
for these energy distributions are still of a quadrupolar nature, with
the partial disclinations attracted to the three sharp corners in the
trianglular case, and more smeared out in the annular geometry and
along one side in the case of the triangle.

localized near the corner, whereas the other is smeared on
the opposite side of the triangle [Fig. 4(a) bottom and top
sides]. The negative disclination monopoles are also localized
and attracted to the two corners of the triangle’s base. In
the circular case [Fig. 4(b)] we find that the induced elastic
charges do not fractionalize—they are smeared evenly over
the boundary instead.

In Fig. 5 we plot force-displacement curves on a double-log
scale for frames of fixed thickness and four different frame
widths. The response is linear for small displacements, sug-
gesting that the frame remains planar and responds by stretch-
ing controlled by the Young’s modulus Y . A “plateau” with
much smaller slope then develops, corresponding to buckling.
In this regime the Young’s modulus is effectively replaced
by κ/L2, as discussed earlier. This is a dramatic softening
for easily bendable frames. Finally, when the displacement
is comparable to the hole size, the response stiffens and
stretching becomes important once again. The “noisy” results
(especially in the top curve of Fig. 5) are not numerical errors

FIG. 5. Force-displacement curves plotted on a log-log scale for
frames with L = 1, t = 0.005. The frame width ranges from top
to bottom across w = 0.25, 0.225, 0.175, 0.125. Different modes of
buckling (see Fig. 1) are responsible for slight qualitative differences
in the buckling pathways, depending on the ratio w/L.

FIG. 6. Log-log force-displacement plots: (a) fixed frame size
w/L = 0.35 and thicknesses t = 0.0005 (green), 0.0011 (blue),
0.005 (orange), and 0.05 (cyan), with the force normalized by
the thickness; (b) fixed thickness t = 0.005 and four frame widths
w/L = 0.5, 0.45, 0.35, 0.25, with the force normalized by the w/L-
dependence according to Eq. (14).

but rather correspond to locally stable configurations as shown
in the inset. The small energetic differences between these
different buckling modes reflects weak interactions between
the screening partial disclinations. Although the energetic
differences are small, we find that for frame sizes w/L �
0.175 the + : L/L : − configuration [Fig. 1(d)] is favorable,
whereas for wider frames the + : L/L : + configuration is
favorable [Fig. 1(f)].

Force-displacement curves for two different protocols are
shown in Fig. 6. In Fig. 6(a) four different thicknesses (or
equivalently four different FvK numbers) are shown at fixed
frame width. The force is normalized by the thickness and
the data collapses to a single linear curve until the onset
of buckling. Frames with a larger thickness buckle at larger
values of the displacement as expected. Figure 6(b) describes
frames with fixed thickness and variable frame width. Using
Eq. (12), the force is normalized by w2�(w/L)2 and collapses
to a single curve until the onset of buckling. The nontrivial ge-
ometric dependence of the force response is well captured by
a single image quadrupolar charge, embodied in the function
�(w/L) described by Eq. (11); the post-buckling collapse
in Fig. 6(b) strongly suggests that image charges provide an
accurate description even for buckled frames.

The departure of the force response curves from linearity,
as in Fig. 6, is a clear but indirect signature of buckling
out of plane. While in experiments this is a useful approach
for estimating the buckling transition, numerical simulations
provide easy access to the bending energy of frames, which
is a direct measure of the amount of buckling. Figure 7(a)
shows a plot of the bending energy normalized by t3 (κ ∼ t3),

FIG. 7. Bending energy as a function of displacement for (a)
fixed hole size and different thicknesses, normalized by t3 (which
scales with the bending rigidity κ), and (b) fixed thickness and
different hole sizes as in Fig. 6(b), normalized according to Eq. (14).
The parameters here are identical to those used in Fig. 6.
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FIG. 8. Effective spring constant keff = df/dδx as function of
the dimensionless frame width w for (a) planar and (b) buckled
frames with L = 1 and t = 5 × 10−4. The blue dots are from the
numerical simulations. The solid lines are analytical results corre-
sponding to Eq. (12) in (a) with no fitting parameters, and to Eq. (14)
in (b) with an overall prefactor as a fitting parameter.

for a fixed frame size and different thicknesses. The collapse
to a single curve in the post-buckled regime clearly shows
the dominance of bending there and reflects the significant
screening of the image charge by Gaussian curvature. The
jump in each curve clearly identifies the buckling transition.
In Fig. 7(b), the thickness is kept fixed and the frame size is
varied. Now using Eq. (14), we normalize the bending energy
by �(w/L)2 ln(w/L), which shows a collapse onto a single
curve in the post-buckling region.

The analytical approach in the planar problem provided us
with an explicit expression for the effective spring constant
for all values of w/L = (1 − H/L)/2. The assumption of
energy localization in the vicinity of the inner corners (as
appropriate for a square frame) was qualitatively confirmed
in Fig. 3 and allows us to estimate the energy of the 3D
configuration. To quantitatively test this physical picture, we
compare in Fig. 8(a) the effective spring constant extracted
from the set of planar frame simulations with the analytical
result in Eq. (12) estimated by four planar partial disclinations
at each corner. With no fitting parameters we find excellent
agreement between the two, for frames with w/L < 1/4 (or
equivalently H/L > 1/2), as expected. The exact expression
for keff = df/dδx for a planar frame and arbitrary frame
width is given in Appendix C.

In Fig. 8(b) we plot the effective spring constant, extracted
from the simulations in the buckled regime, as a function of
the normalized frame width w/L, together with the analytic
calculation in Eq. (14). We find good agreement with only one
overall fitting prefactor. This prefactor reflects the difference
between the (nontopological) screening disclination and the
topological disclination studied for example in Ref. [51].

Finally, in Fig. 9(a) we plot the critical displacement for
buckling as a function of the thickness on a log-log scale. The
straight line ∝ t2 superimposed on the numerical data con-
firms the scaling prediction given in Eq. (15), with δxc/L ≈
75t2. From Eq. (15) we then find that γ frame

c /12w2�(w/L) =
75, which, along with w/L = 0.35, gives γ frame

c � 80. This is
smaller than the value of γc obtained for the buckling of topo-
logical disclinations (γc ≈ 100–120). This difference between
the two highlights the distinction between the buckling of
nontopological partial disclinations and of topological ones. A
detailed investigation of such nontopological partial disclina-
tion is left for future work. The critical displacement extracted
from simulations as a function of w/L for a fixed thickness

FIG. 9. Critical displacement for buckling as function of (a) the
thickness and (b) the frame width, with solid lines fitted to Eq. (15).
The dashed line in (b) goes as w−2, corresponding to the naïve
approximation �(w/L) = constant.

t/L = 0.05 is plotted in Fig. 9(b). Within the “naïve” ap-
proach, where the screening disclinations are assumed to be
independent of the frame width [i.e., �(w/L) = const], the
critical displacement is expected to scale like 1/w2, as shown
by the blue dashed curve. Taking into account the function
�(w/L), as in Eq. (15), we obtain the solid blue line which
agrees well with our numerical results.

V. SUMMARY AND DISCUSSION

In this paper we have applied the geometric formulation of
elasticity to study the mechanics of square frames, especially
their buckling into the third dimension. Using the notion of
external force or displacement-dependent elastic charges, we
developed tools for an explicit and direct computation of
the stressed state of planar frames given an arbitrary hole
geometry. We have shown how stress-induced image charges
within the hole can fractionalize into partial disclinations
localized at sharp corners of the hole. In the buckled regime,
frames respond to applied loads by screening these induced
image charges. The bending energy of elastically distorted
frames was then estimated within this formalism. The image
charge approach made the challenging nonlinear problem of
post-buckling mechanics accessible by directly relating it to a
simpler pre-buckling computation within the planar problem.

The specific simplifications afforded to us by the square ge-
ometry of the hole allowed analytical predictions to be quan-
titatively tested against numerical simulations. Our findings
support the analysis both qualitatively and quantitatively. The
analogy with electrostatics provides an appealing intuitive
picture which allows for the interpretation of the mechanics
of frames through the formation of elastic charges.

It seems plausible that the mechanics of more elaborate
kirigami structures under stress could profitably be thought of
as a problem of interacting elastic charges. This perspective
could provide a powerful organizational framework to think
about the mechanics of kirigami metamaterials. In this regard,
our work can be seen as the first step toward addressing the
general problem. We leave a detailed study of kirigami with
many interacting charges (either screening or fictitious) for
future investigation.
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APPENDIX A: IMAGE CHARGE METHOD
FOR A SHEARED PLANAR ANNULUS

Denote by C(r ) an undeformed circular domain of radius
r . We define the annular domain with outer and inner radii
rout and rin by � = C(rout)\C(rin). The width of the annulus is
denoted by δr = rout − rin. The plane-stress problem in an an-
nular geometry consists of solving the bi-harmonic equation
��χ = 0 (see Eq. (1a)) in �, with boundary conditions

σxy |rout = σyx |rout = σ0, σ xx |rout = σyy |rout = 0,

σ rr |rin = σ θθ |rin = 0, σ rθ |rin = σ θ,r |rin = 0, (A1)

on the outer and inner edges, respectively.
The solution for the stress function is given by [49]

χ (r, θ ) = (ar4 + br2 + c + dr−2) sin 2θ, (A2)

with

a = 2r2
out − 3r2

in

12
(
r2

out − r2
in

)2 σ0, b = 2r2
in − r2

out

4
(
r2

out − r2
in

)2 r2
inσ0,

c = − r6
in

4
(
r2

out − r2
in

)2 σ0, d = r6
inr

2
out

12
(
r2

out − r2
in

)2 σ0. (A3)

The equilibrium configuration is plotted in Fig. 10. Instead of
solving Eq. (1a) in �, the same solution can be obtained by
solving

1

Y
��χ = KIm, (A4)

FIG. 10. The analytic solution for an annulus subjected to pure
external shear on its external boundary.

FIG. 11. The deviation from the exact solution of the approxi-
mate energy of a sheared circular frame, obtained by neglecting the
hexadecapole. The relative deviation is less than 5% up to a relative
hole size of η = rin/rout = 0.7.

in the disk C(rout), where KIm can be nonzero in C(rin) and
corresponds to the image elastic charges required to satisfy
the boundary conditions.

The first two terms (a and b) in Eq. (A2) can be viewed as
resulting from image charges at infinity. The remaining two
terms (c and d) can be viewed as being induced by a singular
source term at the origin of the form

KIm = 2QIm∂x∂yδ(x) + 2HIm∂x∂y�δ(x),

with the magnitude of the charges given by

QIm = − πr6
inσ0

Y
(
r2

out − r2
in

)2 , HIm = − πr6
inr

2
outσ0

6Y
(
r2

out − r2
in

)2 . (A5)

The two singularities correspond to a fictitious quadrupolar
charge and a fictitious hexadecapolar charge, respectively.

To determine the range of validity of the quadrupole
approximation, for the case of a prescribed shear force σ0,
we calculate the energy Eannulus of a sheared annulus from
Eq. (A2). The energy is composed of the boundary terms, the
quadrupolar and hexadecapolar terms, and an interaction term.
Summing them gives

Eannulus = 12 − 12η2 + 3η4 + 5η6

24(1 − η2)

σ 2
0

Y
πr2

out, (A6)

where η = rin/rout = 1 − (δr/rout) is the relative hole size. In
the limit δr → rout, which equivalent to η → 0, the domain is
a full disk, and this expression recovers the standard result

Edisk = πr2
out

2Y
σ 2

0 . We now compare the exact solution of the
circular geometry with an approximation obtained by neglect-
ing the hexadecapolar term. In Fig. 11 we plot the relative
deviation of the approximate solution from the exact one,
as a function of the hole size. We find that the deviation is
less then 5% for frame widths of size 0.3 < δr/rout, which
provides a guide for the pure quadrupole approximation ap-
plied to circular frames. Indeed, upon referring to Fig. 1(c),
we expect the quadrupole approximation to be adequate when
0.3 � w/L.
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FIG. 12. A finite slit of length l in an infinite medium subjected
to a remote stress σ0. When loaded, the slit lips are opened, and the
stress field becomes singular near the slit ends.

APPENDIX B: CURVATURE DISTRIBUTION
OVER THE BOUNDARIES

There are two different approaches to understanding the
notion of elastic charge distributions on boundaries. We dis-
tinguish between elastic charges in the planar and buckled 3D
problems.

1. Elastic charges—The planar problem

For planar problems one can understand the basic idea
using the equation for the stress function. In this case χ

satisfies
1

Y
��χ = −KIm,

where KIm, the charge induced by the external load, is ex-
pected to be realized by the elastic charge distribution over
the boundary. We set φ ≡ −�χ and recover Poisson’s equa-
tion �φ = YKIm. Gauss’ law, with φ treated as an electric
potential, determines the charge on the boundary. As an
example, consider the problem of a finite slit located on the
x axis at −l < x < 0 (see Fig. 12). When uniaxial remote
loads are prescribed along the y direction, the solution to the
biharmonic stress function that satisfies stress free boundary
conditions along the slit, near the right tip, is

χ = Aσ0

√
l r3/2

(
cos

ϕ

2
+ 1

3
cos

3ϕ

2

)
+ O(r5/2), (B1)

with A a positive numerical constant, and σ0 the remote stress
applied along the y direction. Here (r, ϕ) are polar coordinates
measured from the slit tip, with ϕ = 0 pointing in the x di-
rection. In Cartesian coordinates φ ≡ −�χ = −(σxx + σyy ),
which means that −φ is the pressure. Close to the slit tip (see
Ref. [55]) Eq. (B1) yields

φ ≈
√

l σ0√
2r

cos
1

2
ϕ. (B2)

Calculating the normal derivative along the slit, Gauss’ law
with the “potential” φ, gives a charge density

ρIm(r ) = −A
√

l σ 0

Yr1/2
+ O(r1/2).

This result shows that there is a negative power-law sin-
gularity near the corner. This is consistent with our image
charges approach and with the singularity of electric charge
density at the tip of a 2D conductive needle. We expect similar
power-law singularities near the frame corners for other hole
shapes.

FIG. 13. Illustration of buckled partial disclinations prescribed
by fixing an angle between two rigid rods attached to the sector’s
radial edges. (a) Unstressed sector of angle deficit � = π/3; (b) a
negative buckled conical configuration induced by opening the rods
by an angle δθ .

2. Curvature charges—The 3D problem

In the 3D problem there are now curvature charges in
addition to the elastic charges introduced in the planar case.
These correspond to singular Gaussian curvature of the con-
figuration. The equation for the stress function is then

1

Y
��χ = K − KIm.

Since K and KIm can, in principle, cancel each other, we
expect K to distribute over the boundary to cancel KIm in
the inextensible limit (very thin sheet). Although the Gaussian
curvature is well-defined in the bulk, its meaning on the
boundary is not immediately clear. To clarify this point we
focus on the deformation illustrated in Fig. 13. In Fig. 13(a),
the sector is flat, and the tangent vector to the boundary is
everywhere continuous, except of the two intersection points
between the circular edge with the radial edges, and the point
of intersection between the two radial edges. These discon-
tinuities contribute to the geodesic curvature, and flatness
(K = 0) together with the Gauss-Bonnet theorem:∫

�

KdS +
∮

∂�

kgdl = 2π (B3)

leads to ∮
∂�

kgdl = 2π. (B4)

Upon isometrically deforming the sheet as illustrated in
Fig. 13(b), i.e., by introducing slight opening angle between
the radial edges, the geodesic curvature is everywhere con-
served, except at the corner between the radial edges. Assum-
ing the angle excess between the radial edges is �θ , one finds∮

∂�

kgdl = 2π + �θ.

The Gauss-Bonnet theorem then requires that K be modified
by the imposed deformation. The deformation being isometric
also forces K to be singular, vanishing everywhere but at the
origin, ∫

�

KdS = −�θ, (B5)

which gives

K = −(�θ )δ(2)(x).

This argument shows that a singular source of Gaussian curva-
ture can be related to the excess or deficit geodesic curvature
along the boundary.
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APPENDIX C: CALCULATION OF keff

In the body of the paper we transformed the problem
of a planar frame under load, as expressed in Eq. (4), to
a simpler problem as expressed in Eqs. (5) and (7). The
calculation of the unknown charges requires an integra-
tion over the frame of the terms in Eq. (5). The functions

φ1, φ2 and � are expressed in Eqs. (8), (9), and (11)
in terms of the energy-minimizing charges. The effec-
tive spring constants may then be expressed in terms of
�. The calculation for the unknown charges, the func-
tions φ1, φ2, �, and the effective spring constants, are
all presented in detail in the attached Mathematica note-
book.
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