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Visualizing dislocation nucleation by indenting
colloidal crystals
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The formation of dislocations is central to our understanding
of yield, work hardening, fracture, and fatigue1 of crystalline
materials. While dislocations have been studied extensively in
conventional materials, recent results have shown that colloidal
crystals offer a potential model system for visualizing their
structure and dynamics directly in real space2. Although thermal
fluctuations are thought to play a critical role in the nucleation
of these defects, it is difficult to observe them directly. Nano-
indentation, during which a small tip deforms a crystalline film, is
a common tool for introducing dislocations into a small volume
that is initially defect-free3–10. Here, we show that an analogue of
nano-indentation performed on a colloidal crystal provides direct
images of defect formation in real time and on the single particle
level, allowing us to probe the effects of thermal fluctuations. We
implement a new method to determine the strain tensor of a
distorted crystal lattice and we measure the critical dislocation
loop size and the rate of dislocation nucleation directly. Using
continuum models, we elucidate the relation between thermal
fluctuations and the applied strain that governs defect nucleation.
Moreover, we estimate that although bond energies between
particles are about fifty times larger in atomic systems, the
difference in attempt frequencies makes the effects of thermal
fluctuations remarkably similar, so that our results are also
relevant for atomic crystals.
To reduce strain energies, colloidal crystals nucleate dislocations,

which mark the boundary of a surface along which the crystal has
been uniformly sheared1. Dislocation nucleation reflects a compe-
tition between the energy cost for creating a dislocation loop and the
energy gain from the strain relieved by the shear along the surface
bounded by the loop. The nucleation energy reaches amaximum,Uc,
at the critical loop radius, rc. Therefore, dislocations are formed only
if the loops become greater than rc. The energy barrier for defect
nucleation depends sensitively on the applied strain; at low strains,
thermal fluctuations are the only means of overcoming this barrier.
While recent in situ techniques allow the imaging of the evolution of
dislocations on a medium-range length scale during indentation
using transmission electron microscopy9,10, the nucleation of dis-
location loops and the consequences of thermal effects are extremely
difficult to observe directly in atomic systems.
We grow a 43-mm-thick face-centred cubic (f.c.c.) crystal in the

[100] direction by slowly sedimenting 1.55-mm-diameter silica
particles onto a patterned [100] substrate11. The silica particles are
suspended in a mixture of water and dimethylsulphoxide (DMSO),
which matches their refractive index. We add a small amount of
fluorescein to the solvent so that under fluorescence the particles
appear as dark spots on a bright background. By varying the crystal
thickness we confirm that in this crystal sufficient thermally induced
particle motion persists that the effects of thermal fluctuations can

still be observed on reasonable timescales. We indent the crystal with
a sewing needle (Singer sewing needles, 25 assorted sharps) attached
to a piezoelectric translation stage. The needle has an almost-
hemispherical tip with a diameter of 40 mm; this tip shape induces
a strain field whose maximum shear strain is well below the contact
surface, and is commonly used for studying dislocation nucleation.
The length scale ratios between tip diameter, particle radius, and
film thickness are similar to the ratios used in nano-indentation
experiments; thus the experiments are comparable.
We use laser diffraction microscopy (LDM)2 to obtain an overview

of the dislocation nucleation process. The incident beam forms a 368
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Figure 1 | Laser diffraction microscopy images of defect structure.
a, Schematic of the indentation configuration. The imaging line of sight (red
line) forms a 368 angle with the template and corresponds to the [111]
direction of the f.c.c. lattice. b–e, LDM images depicting dark regions that
correspond to crystal lattice distortions. b, Arrows indicate two dark regions
observed at t ¼ 190min. These regions first appear at t ¼ 160min and
persist until t ¼ 220min. c, d, Arrows indicate a dislocation loop that
becomes detached from the needle. e, Final dislocation structure at
t ¼ 600min.
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angle with the plane of the template and is parallel to the [111]
direction of the f.c.c. crystal (Fig. 1a). We use the transmitted beam
for imaging the defect structure. LDM exploits the difference in
scattering between the perfect and the distorted crystal lattices near
the dislocation core, and produces a real-space image in which
dislocations appear as dark lines on a bright background. We lower
the needle at a rate of 3.4 mmh21 and record LDM images (see
Supplementary Information video). Surprisingly, even before the
needle touches the crystal, thermal effects produce local intensity
fluctuations which last several seconds.
Four images of the indented crystal are shown in Fig. 1. About

190min after we start lowering the needle, we observe two dark
regions beneath the needle tip (arrows in Fig. 1b), which we associate
with the strained lattice. Remarkably, these regions exhibit intensity
fluctuations that last several minutes. This suggests that, in the
strained lattice, thermal fluctuations become more spatially corre-
lated, and persist over longer timescales than in the unstrained lattice.
After 230min, we observe a dark circular spot, about 8 mm in radius,
centred 15 mm below the needle (Fig. 1c). This spot grows in size and
finally detaches from the needle (Fig. 1d). These images show the
nucleation of a dislocation loop and its eventual detachment from
the needle. After the first event, we observe nucleation and propa-
gation of many more loops, which form a complex dislocation
network after 600min (Fig. 1e). Because of the complexity of this
network, its three-dimensional evolution needs to be explored on the
particle scale.
We use confocal microscopy to image individual particles in a

60 mm by 60 mm by 30 mm section of the colloidal crystal (Fig. 2a).
This technique allows us to image the dislocations and to determine
the strain field caused by the indentation. We determine individual
particle positions in three dimensions with an accuracy of about
0.03 mm in the x and y directions and 0.05 mm in the z direction12. In

this experiment, we start with the needle tip about 2 mm above the
crystal surface and lower it at a rate of 2.9 mmh21. After 98min, we
observe a pronounced fluctuation in the crystal lattice below the
needle tip, where particle rows spread apart, trying to incorporate a
defect. A defect is clearly visible, as indicated by the blue arrow in the
confocal microscope image of the particle configuration at
z ¼ 15 mm below the tip, shown in Fig. 2b. The extent of the defect
is indicated by the black arrows. Remarkably, the particle rows close
again after about 5min. After five such fluctuations appear and
disappear, a stable defect finally nucleates at 112min (Fig. 2c) and
grows (Fig. 2d).
To determine the full structure of the defects, we show three-

dimensional reconstructions of the unstable and stable defects in
Figs 2e–g. The x, y and z axes correspond to the (1 1 0), (110), and
(001) directions of the f.c.c. lattice, respectively. At the defects, three
of the six opposing nearest neighbours exhibit distorted ‘bond’
angles that are smaller than 1808. To visualize this, we use yellow
spheres to indicate opposing particles at angles between 1658 and
1558, and red spheres to indicate opposing particles at angles less than
1558. Red particles accumulate roughly 15 mm below the needle tip.
They mark a surface along the hexagonal close-packed (h.c.p.) plane
where the crystal has changed its stacking order, confirming that this
is a planar defect. The yellow particles that lie at the boundary of this
stacking fault in Fig. 2g trace the dislocation line. The Burgers vector
of the dislocation is oriented along the (1 1 2) direction and has a
length of 0.94 mm, which corresponds to the distance between
adjacent wells of the h.c.p. plane. This defines the dislocation glide
plane, on which defects nucleate most easily owing to the shallow
potential wells. This type of dislocation is known as a Shockley partial
dislocation and is the most prominent dislocation observed in f.c.c.
metals. Unlike metals, where Shockley partial dislocations typically
appear in pairs to reduce the extent of the stacking fault, in our

Figure 2 | Defect formation on the particle scale. a, Schematic showing the
position of the needle tip with respect to the 60 mm by 60 mm by 30 mm
crystal section depicted in b to i. b–d, Confocal microscope images of defect
nucleation, taken at about 15 mm below the needle tip. b, Arrows indicate a
defect that disappears after several minutes. c, Arrows indicate a defect that
is stable and grows in size. d, Same defect as in c after it has fully grown.
e–g, Reconstructed images of defect formation correspond to the confocal
microscope images b–d. Yellow and red spheres indicate particles with
slightly and highly distorted nearest-neighbour configurations, respectively.
Arrows indicate stacking faults that are bound by a Shockley partial

dislocation. Dashed lines at z < 20 mm indicate the height at which the
confocal images are taken. h, Reconstruction shows a second stable defect,
which nucleates on an adjacent intersecting plane. This defect appears at
t ¼ 154min. i, Traces of the dislocation lines that surround the defects
depicted in e–g. The red dots trace the dislocation line that surrounds the
defect in e. The blue dots trace the dislocation lines that surround the stable
defect shown in f and g. These traces were determined from the raw confocal
images such as those in b–d by pinpointing the intersection of the
dislocation line (black arrows in b–d) with the image planes.

LETTERS NATURE|Vol 440|16 March 2006

320



© 2006 Nature Publishing Group

colloidal crystal these dislocations appear to be unpaired. This
difference results from the vanishingly low energy cost associated
with stacking faults in hard-sphere crystals. A second dislocation is
nucleated on an adjacent intersecting plane at t ¼ 182min, as shown
in Fig. 2h.
These microscopic observations provide a unique opportunity for

direct measurement of the critical radius, rc. We trace the dislocation
lines that surround the defects shown in Figs 2e–g by carefully
examining the confocal images (Fig. 2i legend). The traces reveal
circular loop shapes that open towards the crystal surface (Fig. 2i).
The radius of the unstable defect (Fig. 2i, red dots) is approximately
5 mm while the radius of the stable defect (Fig. 2i, blue dots, small
loop) is 7mm; thus, rc < 6 mm.
To explore the mechanism that drives the nucleation of these

defects, we determine the components of the applied strain along the
h.c.p. planes, where the defects nucleate. The elastic strain tensor is
determined from the distortion in the configurations of the nearest
neighbours of the particles. For each particle, we compare the vectors
di to its 12 nearest neighbours iwith the nearest-neighbour vectorsDi

of the ideal f.c.c. lattice. The best affine deformation tensor, a, that
transforms the ideal vectors, Di, to the real vectors, di, is determined
by minimizing the mean square difference

P
i(di 2 aDi)

2 (ref. 13).
The symmetric part of a corresponds to the local strain tensor of the
particle under consideration. To smooth the resulting strain distri-
bution, we average the strain tensor for each particle with those of its
nearest neighbours and assign the resultant average strain tensor, 1 ij,
to the particle under consideration.
The advantage of using confocal microscopy to image individual

particles and measure the full strain tensor is that we can determine
g, the shear component of the strain on the (1 1 1) plane where the
first defect nucleates. To implement this new method of determining
the shear strain, we calculate the average strain tensor 1 0

ij in a rotated
coordinate system, in which the x 0 and z 0 axes align with the (1 1 2)
and (1 1 1) directions, respectively. We take g ¼ 21 0

x
0
z
0 . We illustrate

various cuts through the crystal, and represent the magnitude of g
with colour. The g distribution shortly before the defect in Fig. 2e
nucleates is shown in Fig. 3a and b. A region of high positive shear
strain (red) is centred approximately 10 mm below the needle, where
the average value of g is approximately 0.06. Strikingly, the shape of
this strain distribution matches the contrast profile observed with
LDM (Fig. 1b). Defect nucleation occurs entirely in this region of
high shear strain.
The strain field changes drastically after the first dislocation

nucleates. To highlight this change, in Fig. 3c we plot the g
distribution along the y–z plane that intersects the dislocation loop
along its diameter and is perpendicular to the cut shown in Fig. 3a.
The negative shear strain induced by the dislocation loop (blue)
reduces the cumulative strain that drives nucleation of a second
dislocation on the same glide plane. In contrast, the distribution of
g

0 , the component of the strain on the (111) plane, still has a region
of high positive strain (Fig. 3d). This results in the nucleation of a
second dislocation loop in an adjacent, but intersecting h.c.p. plane
(Fig. 2h).
The distribution of g in Fig. 3c shows that the negative shear strain

regions (blue) inside the dislocation loop almost overlap. Because the
contrast in the LDM images arises from these lattice distortions, this
observation validates our interpretation that small dislocation loops
appear as dark spots in Fig. 1c and d. This strain distribution also
allows us to determine the precise position of the dislocation loop
and where it intersects the y–z plane in Fig. 3c. To accomplish this, we
focus on particles within 1.6 mmof the dashed line and plot g versus y
in Fig. 3e. The strain diverges on both sides of the dislocationwith the
divergence truncated at the dislocation core. The crossovers at y ¼ 7
and y ¼ 45, where g switches sign, demarcate precisely the intersec-
tion of the dislocation with the y–z plane. This is in excellent
agreement with the location of the dislocation line shown in Fig. 2i.
The precision of our measurements presents an opportunity to

make direct comparisons with continuum models14–16. We consider

Figure 3 | Strain distribution in the indented crystalline film. Particle
colour in a–d indicates the value of the local shear strain (see colour scale).
Positive shear strain is indicated by arrows in each figure. a, b, Two cuts
showing the distribution of g, the shear strain component on the (1 1 1)
plane along [1 1 2] at t ¼ 91min. a, 3-mm-thick x–z crystal section centred
below the needle at y ¼ 29 mm. b, 3-mm-thick x–y crystal section located
10 mm below the needle at z ¼ 29mm. c, d, Two cuts showing the strain
distribution at t ¼ 119min, shortly after the first dislocation loop nucleated.
Both figures show a 3-mm-thick y–z section at x ¼ 33mm, which intersects

the loop at a diametrical plane. c, Distribution of g, the component of the
shear strain on the defect plane. Adjacent regions of high negative shear
strain (blue particles) andmoderately positive shear strain (yellow particles)
are observed. d, Distribution of g 0 , the shear strain component on the
intersecting {111} plane. In contrast to c, a central region of high positive
shear strain is observed below the needle tip. e, Shear strain values versus y
for particles within 1.6mm of the dashed line at z ¼ 23 mm in c. g switches
sign at y ¼ 7 mm and y ¼ 45mm. This demarcates where the dislocation line
intersects the y–z plane.
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the crystal to be an isotropic, linear elastic medium with Young’s
modulus E, shear modulus m, and Poisson ratio n. The high shear
strain region of the elastically deformed lattice (Fig. 3a) is observed at
roughly 0.8 times the contact radius below the needle tip. The
location of the shear strain maximum is in good agreement with
hertzian theory for the strain distribution under an indenting tip17. It
is also in good agreement with measurements of a two-dimensional
model system formed from bubble rafts6. Experiments with needles
of different size showed a shift of the shear strain maximum in
accordance with the predictions of hertzian theory.
The role of thermal fluctuations can also be quantitatively

addressed. The energy cost to create a dislocation loop of radius r
is A(mb2r/2) ln(r/r0), where r0 is the effective core radius of the
dislocation strain field, b is the length of the Burgers vector, and A is a
constant that accounts for the mixed edge–screw topology of a
dislocation loop14–16. The energy gain from relief of the overall strain
is pr2bt, where t is the local stress before dislocation nucleation. The
total nucleation energy has a maximum at rc ¼ (A/4p)gb ln(rc/r0),
while the critical energy at r ¼ rc is Uc ¼ A(mb2rc/4)ln(rc/r0). Here,
we have used g ¼ t/m. We calculate A by averaging over the edge and
screw components of the dislocation loop to yield A ¼ 5/4 (ref. 15).
In addition, we include the additional energy stored within the
dislocation core and use r ¼ b exp(20.4) ¼ 0.67b (ref. 15). We plot
the resultant rc/b and Uc/mb

3 versus g in Figs 4a and b. Both rc and
Uc decrease monotonically with increasing g. The theoretical shear
strength corresponds to the value of the stress atUc ¼ 0. Beyond this
stress, dislocations form even in the absence of thermal fluctuations
and this description breaks down. The vertical dashed line and
shaded bar centred at g ¼ 0.06 correspond to the mean of g and
the standard deviation of the mean in the high strain region. The
shaded horizontal bar centred at 6.4 marks the possible range for rc/b
determined from the experiment. The intersection of the shaded
regions is close to the calculated curve, which confirms that this
continuum model can be applied to our system.

Further confirmation of the model comes from comparison of the
measured and predicted values for Uc. We determine Uc from the
observed nucleation rate using J ¼ f0 m exp(2Uc/kT), where m is
the total number of particles in the high stress region and f0 is a
characteristic frequency of the particles. We estimate the nucleation
rate from the time between fluctuations, 2 £ 1023 s21.We estimate f0
from the timescale t required for a particle to diffuse in its local well
until it reaches its nearest neighbour. The distance a particle moves is
d < 0.08 mm. Because t ¼ (phad 2/kT) (ref. 18), where a is the
particle radius, k is Boltzmann’s constant, T is the temperature and
the solvent viscosity is h ¼ 3 £ 1023 Pa s (ref. 19), we find t < 1022 s
yielding a frequency of f 0 ¼ 100 s21. Furthermore, we estimate
m ¼ 125 from the observation that the high shear strain region
extends about five particle diameters in the x, y and z direction. Thus,
we obtain Uc/kT ¼ 16, which yields a critical nucleation energy of
about 0.41 eV. Finally, using m ¼ E/[2(1 þ n)] with n ¼ 1/3 (ref. 20),
E ¼ 0.3 Pa (ref. 2), and b ¼ 0.94 mm, we obtainUc/mb

3 ¼ 0.7, which
is marked by the horizontal dashed line in Fig. 4b. Themodel predicts
a value that is a factor of two larger than our estimate, which is well
within the uncertainty of our estimate of Uc/mb

3.
Nano-indentation experiments on atomic systems typically entail

measurements of force–displacement relationships3–5. Values of
forces required for indentations of atomic systems are typically
several tens of micronewtons. By comparison, from the measured
strain, the elastic modulus, and the contact area of the indenter, we
estimate that the forces required to induce defects in these colloidal
crystals are only several piconewtons and cannot be measured. We
can determine the origin of this difference by estimating the shear
modulus to be m ¼ Ub/a

3, where Ub is the interaction energy. Then
the difference between these forces reflects the number of particles
under the tip, which leads to a factor of ,400, the bond energies,
which lead to a factor of,50, and the size of the particles, which leads
to a factor of ,104; the net result gives a difference of 2 £ 108, in
reasonable agreement with our estimate.
The advantage of investigating colloidal systems, however, is that

we can directly image the microscopic strain field, which allows us to
follow the thermal activation of dislocation loops precisely and to
measure the critical size for their nucleation. The value ofUc ¼ 16kT
reflects the diverging entropic cost for changing particle configu-
rations near the close-packed limit of the colloidal crystal. By
comparison, in atomic systems at equal nucleation rates, the value
of Uc is a factor of two higher, reflecting that the attempt frequency
is ten orders of magnitude higher. Values of mb3 for a compliant
metal such as aluminium are also only a factor of two higher than
estimates for mb3 in our colloidal suspension. Remarkably, the ratio
Uc/mb

3 (Fig. 4b) is unchanged, which indicates that the effects of
thermal fluctuations in our experiment are similar to those in a
typical nano-indentation experiment; they should therefore be
observed in experiments that have sufficiently accurate strain
control.
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