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Biaxial shear of confined colloidal hard spheres: the
structure and rheology of the vorticity-aligned
string phase†

Neil Y. C. Lin,* Xiang Cheng‡ and Itai Cohen

Using a novel biaxial confocal rheoscope, we investigate the flow of the shear induced vorticity aligned

string phase [X. Cheng et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 109, 63], which has a highly anisotropic

microstructure. Using biaxial shear protocols we show that we have excellent control of the string phase

anisotropic morphology. We choose a shear protocol that drives the system into the string phase.

Subsequently, a biaxial force measurement device is used to determine the suspension rheology along

both the flow and vorticity directions. We find no measurable dependence of the suspension stress

response along the shear and vorticity directions due to the hydrodynamically induced string

morphology. In particular, we find that the suspension's high frequency stress response is nearly identical

along the two orthogonal directions. While we do observe an anisotropic stress response at lower shear

frequencies associated with shear thinning, we show that this anisotropy is independent of the shear

induced string structure. These results suggest that for the range of flows explored, Brownian and

hydrodynamic contributions to the stress arising from the anisotropic suspension microstructure are

sufficiently weak that they do not significantly contribute to the rheology. Collectively, this study

presents a general and powerful approach for using biaxial confocal rheometry to elucidate the

relationship between microstructure and rheology in complex fluids driven far-from-equilibrium.
1 Introduction

Anisotropic materials are ubiquitous in nature – examples
include wood, bone,1 anisotropic crystals,2,3 and plasmas.4

Furthermore, many so materials, which are important for
industrial and biological applications, form anisotropic struc-
tures in response to external elds5,6 and demonstrate highly
anisotropic viscosities. Representative examples include
nematic liquid crystals,7,8 magnetic uids,9 and muscle
tissues,10 all of which exhibit different viscosities along different
directions. In many of these systems, anisotropic microstruc-
tures give rise to the anisotropic mechanical properties.

A particularly striking example of anisotropic microstruc-
tures are the various vorticity-aligned assemblies found in many
complex uids, including thixotropic clay gels,11 attractive
colloids12 and emulsion droplets,13 nanotube suspensions,14–16

ber suspensions,17 and hard sphere colloids.18 Such phases are
of technological interest since they have potential applications
in the areas of nano-fabrication and bio-analysis.19–21 Despite
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extensive study of these shear induced anisotropic structures
and their rheology under uniaxial shear,12–18 the relation
between the structures they form and their corresponding
direction-dependent viscosities is still poorly explored. One of
the technical hurdles for relating anisotropic structure to the
material's anisotropic rheology is the inability to simulta-
neously image the sample microstructure while measuring its
anisotropic rheology.

Here, we use a newly developed technique to simultaneously
investigate the structure and biaxial rheology of the vorticity-
aligned string phase in sheared colloidal suspensions under
connement. This phase demonstrates string-like particle
assemblies aligning along the vorticity direction, and has a one-
dimensional translational symmetry.12,18,22–26 In many systems it
has been suggested that the vorticity-aligned structures arise
from interparticle attractions.12–14,16 In contrast, the string
assemblies in the hard sphere colloid system investigated here,
result from the unique interactions that arise from geometric
constraint and hydrodynamic particle–particle and particle-wall
couplings all of which are enhanced by connement.18

To measure suspension rheology we construct a biaxial
confocal rheoscope by combining a dual-directional shear cell
with a biaxial force measurement device. This apparatus allows
for manipulating the formation and the orientation of shear-
induced structures while simultaneously measuring their
anisotropic mechanical response, and imaging their
Soft Matter, 2014, 10, 1969–1976 | 1969
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structure.27–31 We rst demonstrate direct control over the
isotropic-to-string phase transition using biaxial shear ows.
With this technique in conjunction with oscillatory superposition
spectroscopy, we then directly measure the rheology of the string
phase along different directions. Surprisingly, we nd that the
anisotropic structure has a negligible effect on the corre-
sponding rheological properties of the suspension.

2 Experimental method

The schematic of the biaxial shear cell is illustrated in Fig. 1. For
each experimental run, 10 ml of suspension are loaded in a gap
consisting of a coverslip and a 4 mm � 4 mm silicon wafer with
a 9 mm separation between them. Both plates are adjusted to be
parallel within 0.0075� by turning three set screws. The cover-
slip is coupled to a multi-axis piezo (PI P-733) that can generate
movements along all directions to apply biaxial shear ows. The
silicon wafer is attached to a biaxial force measurement device
(FMD) so that the shear stresses sxy and szy are measured
simultaneously. Here, X, Y, and Z correspond to the ow,
gradient, and vorticity axes of the rst shear ow.

In the FMD, eight foil gauges – four for each direction – are
wired as two independent Wheatstone bridges that enable
stress measurement. All signals measured by the FMD are
amplied by signal conditioning ampliers (Vishay 2310B) then
digitized for Fourier analysis. By mounting this biaxial shear
cell on a fast confocal microscope (Zeiss LSM 5 Live), we also
image the microstructure while the suspension is sheared and
the stress response is measured. The calibration details of the
shear cell alignment and the FMD performance are in the
Appendix.

Our sample is comprised of silica particles with diameter a¼
1.3 mm suspended in a 1 : 4 water–glycerin mixture. The solvent
has a viscosity h ¼ 0.06 Pa s and a refractive index of 1.442 that
matches that of the particles. The suspension volume fractions
Fig. 1 Three dimensional schematic of the biaxial force measurement
device (left) and coordinate definition (right). The abbreviations SG and
ST stand for strain gauges and the solvent trap, respectively. The lower
strain gauges measure the stress response along the X-axis, sxy, and
the upper ones measure the response along the Z-axis, szy. The gap
between the top plate (silicone wafer) and the bottom plate (coverslip)
is exaggerated for clarity. The gap separation in the experiments is
9.0 mm. The shear flow is separately imposed along the X and Z axes by
moving the bottom plate using a multi-axis piezoelectric actuator.

1970 | Soft Matter, 2014, 10, 1969–1976
we work with are f ¼ 0.37 and 0.47. We add 1.25 mg ml�1 of
uorescein sodium salt to dye the solvent for confocal imaging.
The electrostatic screening length is �10 nm, so that the
interparticle interactions are nearly hard-sphere.

The biaxial shear ow imposed can be divided into two
oscillatory shear ows

gðtÞ ¼ g1 sinðu1tÞ þ g2 sinðu2tþ dgÞ: (1)

Here, g corresponds to the strain amplitude tensor, u

corresponds to the shear frequency, and dg corresponds to the
phase angle difference between the rst ow, indicated by the
subscript 1 and the second ow, indicated by the subscript 2.
When both the rst and the second ows are parallel, the
strains g1 and g2 are aligned and the stress response is probed
along the ow direction. When the rst and the second ows are
perpendicular, the strain g2 probes the response orthogonal to
the direction of the rst ow.
3 2D-oscillatory shear: phase angle
dependence of structure and rheology

In the phase angle experiment, we set the rst ow g1 ¼ 2:50X̂Ŷ
and the second ow g2 ¼ 2:50ẐŶ perpendicular. Here, while the
ows characterized by g1 and g2 are along X-axis and Z-axis
respectively, both g1 and g2 share the same gradient axis
(Y-axis). We x the shear frequency at u1 ¼ u2 ¼ 31.4 s�1 and
vary the phase angle dg over the range 0 # dg # p. Thus the
maximum shear rate along each axis is 78.5 s�1, which corre-
sponds to Pe¼ 4.73� 103. Here, the Péclet number is dened as
Pe¼ 6ph0 _ga

3/(8kBT) and characterizes the ratio of the shear rate
_g to the relaxation rate 1/ss of the sample. This method has been
introduced as 2D-SAOS (small amplitude oscillatory shear)
when the strain amplitude (#5 � 10�2) is small.32

Fig. 2(a)–(c) show the normalized magnitude ~g1 versus ~g2

Lissajous-Bowditch curves for the imposed ows where dg ¼ 0,
p/6 and p/2 respectively. For dg¼ 0, the shear strain trajectory is
linear and aligned at 45� to the X-axis. This linearly polarized
shear ow is the same as the uniaxial shear ow with a different
orientation (Fig. 2(a)). In Fig. 2(b) and (c), gðtÞ is elliptically
polarized with dg ¼ p/6 and circularly polarized with dg ¼ p/2.

Previous measurements have shown that the string struc-
tures are most pronounced near the boundaries.18 Thus, for
each phase angle, we image the colloidal particles in the second
layer 2.5 mm below the top stationary plate. We nd that as dg

changes from 0 to p/2 the suspension structure transitions from
a string morphology to one that is isotropic (Fig. 2(d–f)). To
illustrate this transition we calculate the pair correlation func-
tions g(~r ) and average them individually over 20 cycles of shear
(Fig. 2(g)–(i)). Here g(~r ) is the normalized probability of nding
a particle at vector~r with respect to another particle in the X–Z
plane. In Fig. 2(d), we nd that when the suspension is sub-
jected to a linearly polarized shear ow, g(~r ) demonstrates a
highly anisotropic distribution at its rst peak and exhibits
stripes at larger ~r. These stripes along with the anisotropic
distribution of particle densities conrm that particles align
along the vorticity direction and form string structures under
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Suspension microstructure for three phase angles dg ¼ 0, p/6 and p/2. Lissajous curves for the normalized shear strains ~gy versus ~gx are
plotted in (a)–(c), where (a)–(c) correspond to dg¼ 0,p/6 andp/2 respectively. The 2D confocal images of the suspension with dg¼ 0,p/6 andp/
2 are shown in (d)–(f) respectively. The corresponding pair correlation functions g(~r ) of the particle distribution are shown in (g)–(i). Each g(~r )
image represents a measurement averaged over 20 shear cycles. The dashed lines are guides for the eye and denote the 45� and the 135�

orientations. The color ranges in the density plots are chosen to emphasize the structural features.
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uniaxial shear (Fig. 2(g)). This nding is consistent with
previous results.18 As dg increases to p/6, the rst peak of g(~r )
maintains a similar shape but with a broader peak width. Most
stripes disappear and the anisotropy of the second and the third
peaks of g(~r ) signicantly decreases (Fig. 2(h)). Finally, for dg ¼
p/2, g(~r ) is isotropic indicating that the suspension is charac-
terized by liquid-like order Fig. 2(i).

Additional structural characterization of the string phase
including the alignment order parameter, layering, and time
dependence can be found in (ESI†). Here we simply point out
that by imposing different phase angles we are able to control
the suspension structure while keeping the Pe for the ows
along both axes constant. This protocol allows for excluding
effects from other contributions, including Brownian stresses
and hydrodynamic coupling, that can arise when comparing the
rheology of the sample at different shear rates.

Using this protocol we study the relation between the
rheology and the anisotropic microstructure by measuring the
stress responses along the X-axis, sxy, and the Z-axis, szy,
simultaneously for different phase angles dg. We nd that the
rst harmonic term for the stress response accounts for over
90% of the force amplitude and dominates the higher order
terms,33 which are oen buried in the noise. We therefore report
the rst harmonic response amplitude as the measured stress
peak within one shear cycle. We plot sxy and szy versus dg in
Fig. 3(a). Despite the dramatic change in microstructure, we
nd that both sxy and szy are independent of dg. To measure the
Pe-dependence of stress responses we perform an amplitude
sweep over the range 5:70� 10�3 # |g|# 3:00 while keeping the
frequencies xed at 31.4 s�1. We plot sxy versus Péclet number
This journal is © The Royal Society of Chemistry 2014
for both dg ¼ 0 (linear) and dg ¼ p/2 (circular) polarizations in
Fig. 3(b). We nd quantitatively similar dependencies for both
polarizations. These data indicate that for u ¼ 31.4 s�1 the
shear induced in-plane structure does not alter the suspension
rheology for 11 < Pe < 5.7 � 103.
4 Oscillatory superposition
spectroscopy

To probe the anisotropic rheological properties of the suspen-
sions, we perform an oscillatory superposition spectroscopy
measurement.34,35 Similar methods have recently gained trac-
tion for determining the shear thinning behavior of polymer
solutions34,35 and colloidal glasses,36,37 as well as slow relaxa-
tions in granular systems.38 To investigate the string phase we
choose the rst shear ow along the X-axis that generates the
most pronounced strings (|g1| ¼ 2:50 and u ¼ 31.4 s�1), and
use the second ow to probe the suspension response. It is
important to note that in such biaxial ow experiments, tech-
nically there are no well dened vorticity and ow axes for the
overall ow, as shear is being applied in both the X–Y and Z–Y
planes. Nevertheless, it is still useful to think of the system as
being driven by the rst ow and being probed by the second
ow. These labels do however lose their meaning as the shear
rate due to the second ow becomes comparable to that of the
rst ow.

Because the rheological phase space that can be explored is
vast and because the measurements are time intensive, we use
the second ow to conduct an amplitude and a frequency
Soft Matter, 2014, 10, 1969–1976 | 1971
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Fig. 3 Suspension stress response versus dg (a) and Pe (b). (a) The stress
responses along the X-axis, sxy, and the Z-axis, szy, are plotted versus dg
with g1,2¼ 2.50 andu1,2¼ 31.4 s�1. The dashed horizontal line indicates
the mean value of the data. Each data point is averaged over five
independent measurement runs with each run consisting of 500
cycles. (b) The stress response is plotted as a function of Pe for linearly
polarized and circularly polarized shear flows. The data are consistent
with a Newtonian response as indicated by the linear fit (dashed line).
We note that the smallest measureable stress difference would
correspond to approximately twice the error bar value or �10 Pa.

Fig. 4 Pipkin diagram of the explored regime in this experiment. The
green dashed curve denotes the constant Pe of the first flow. The gray
dashed curve indicates the shear thinning regime. Two long arrows
illustrate the amplitude (vertical) and frequency (horizontal) sweep
measurements performed.

Fig. 5 Stress responses measured using oscillatory superposition
spectroscopy for orthogonal (green diamonds) and parallel modula-
tions (blue squares). (a) Stresses measured in the modulation experi-
ments are plotted as a function of Pe2 for f¼ 0.37. The stress response
without the first flow is also shown in the plot for comparison (red
circles). The dashed vertical lines are the first flow Péclet numbers for
orthogonal (right) and parallel (left). The oblique dashed line is the
theoretical calculation of the hydrodynamic stress response.39 In the
parallel modulation experiment, Pe1 is smaller than that of orthogonal
modulation due to the limitation of the piezo travel distance. (b) Stress
measurements with the same shear protocols conducted for a denser
suspension with f ¼ 0.47. This suspension demonstrates a slight shear
thickening behavior when Pe2 $ 104. The orange lines in both figures
are the theoretical values for the hydrodynamic stress response
calculated using eqn (2).39 The smallest measureable stress difference
in the amplitude sweep measurements would correspond to
approximately twice the error bar value or �1 Pa.
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sweep. These measurements are able to investigate the string
phase rheology over a range of ow rates that separately capture
the hydrodynamic and Brownian contributions to the stress
1972 | Soft Matter, 2014, 10, 1969–1976
response. The regime of the string structure rheology that these
measurements access is illustrated in the Pipkin diagram in
Fig. 4.

4.1 Amplitude sweep: hydrodynamic contributions

In the amplitude sweep measurements, we conduct experi-
ments using parallel and orthogonal modulations of the rst
shear ow. In both orthogonal and parallel cases we record the
total stress for 500 cycles and then take a Fourier transform of
the measurement to read out the response – szy, or sxy at the
frequency u2. The regime examined by this measurement is
depicted by the vertical white arrow in Fig. 4. We plot szy(u2) for
the orthogonal modulation (green diamonds) and sxy(u2) for
the parallel modulation (blue squares) versus Pe2 (bottom axis)
and |g2| (upper axis) in Fig. 5(a). We nd that the measure-
ments for both modulations are quantitatively similar. In both
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Stress responses measured using frequency sweep protocols
for f ¼ 0.37 (dotted symbols) and f ¼ 0.47 (open symbols). The data
for both volume fractions share the same color code. The orange lines
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cases we nd a linear dependence of stress on Pe2 indicating a
Newtonian response. Thus, we nd no measurable effect of the
string structure on the suspension oscillatory shear rheology.
To further probe the dependence of rheology on the shear
induced string structure we conduct additional experiments in
which the rst ow is absent (red circles). We nd that the stress
measurements for these ows are quantitatively similar to those
in which the rst ow is applied. Collectively these results
demonstrate that despite the formation of string structures, the
suspension response remains isotropic. In addition, we calcu-
late the hydrodynamically dominated high frequency stress
response for an isotropic bulk suspension39 with f ¼ 0.37 using

hH ¼
1þ 3

2
f
�
1þ f

�
1þ f� 2:3f2

��

1� f
�
1þ f

�
1þ f� 2:3f2

�� : (2)

We nd that the predicted viscosity hH ¼ 240 mPa s gives a
stress response (orange lines in Fig. 5) that is in excellent
agreement with the data. We also nd that the suspension
stress response remains linear in the applied strain amplitude
at low Pe # 100 and small amplitudes |g2|# 2:00� 10�3. This
linear stress response results in an amplitude-independent
complex viscosity magnitude,40 which is consistent with active
microrheology measurements on quiescent suspensions where
the applied oscillation frequency of the probe particle exceeds
the relaxation rate of the suspension.41

The overlap between the data and the relation from eqn
(2) suggests that the tested conned suspension demon-
strates a bulk stress response. We do however note that the
gap height corresponds to approximately seven particle
layers. Here, our goal was to maximize the portion of the
suspension forming the string phase. At larger gaps strings
no longer form while at smaller gaps the rheology is domi-
nated by the suspension structures arising from interactions
with the shearing plates. Thus it is difficult to test the
explicit effects of connement on the rheology of the string
phase. More broadly, whether the rheology exhibits signi-
cant dependence on gap height for conned suspensions
remains an interesting open question that we hope to
address in future work.

To test whether these results also apply in higher volume
fraction suspensions, we conduct an identical amplitude sweep
measurement with a denser suspension (f ¼ 0.47), and plot the
stress responses in Fig. 5(b). The rheological properties of the
denser suspension are qualitatively similar to that of the sample
with an intermediate volume fraction f ¼ 0.37 (Fig. 5(a)). In
addition, no wall slip is observed at either volume fraction.28

Overall, these results imply that for the range of Pe2 explored,
the shear stress response of the string phase is dominated by a
hydrodynamic contribution that is independent of the shear
induced suspension structure.
are the high frequency responses calculated from eqn (2). The inset
shows the corresponding complex viscosity magnitudes of the
suspension with f ¼ 0.47. The error bars illustrate the standard errors
of the data averaged over five runs of measurements. The dashed
vertical line is the Pe of the first flow. The smallest measureable stress
difference in the frequency sweep measurements would correspond
to approximately twice the error bar value or �0.1 Pa.
4.2 Frequency sweep: Brownian contributions

Shear thinning in suspensions results from the decreased rela-
tive contribution of the Brownian stresses to the total
stress.28,42–44 To probe whether the string structure alters the
This journal is © The Royal Society of Chemistry 2014
response in the shear thinning regime we conduct a frequency
sweep measurement. To conrm that we are probing the shear
thinning regime we rst characterize the ow behavior of
quiescent suspensions where no rst ows are imposed.We plot
the stress response versus Pe2 for f ¼ 0.37 and 0.47 in Fig 6.
Consistent with prior literature results, we nd very weak shear
thinning for the f ¼ 0.37 sample (red squares) and a
pronounced thinning behavior for the f ¼ 0.47 sample (red
circles).44,45

Next, we impose a rst shear ow with |g1| ¼ 2:50 at Pe1 ¼
4.73 � 103 that is strong enough to generate the string phase
and conduct oscillatory superposition spectroscopy measure-
ments using parallel and orthogonal modulations. For both the
orthogonal and parallel modulations, we set |g2| ¼ 1:01 and
vary the frequency so that 17.2 # Pe2 # 1.72 � 104. The regime
explored by this frequency sweep measurement is depicted by
the horizontal white arrow in Fig. 4.

We plot szy(u2) for the orthogonal modulation
(green squares) and sxy(u2) for the parallel modulation (blue
diamonds) versus Pe2 (bottom axis) and u2 (upper axis) in Fig. 6.
The data for the intermediate (f ¼ 0.37) and high (f ¼ 0.47)
volume fractions are denoted by the dotted and open symbols
respectively. Because the shear thinning behavior is weak
(�30%) for f ¼ 0.37,44,45 the change of the ow behavior at low
Pe is barely measurable with our force measurement device. For
the high volume fraction suspension (f¼ 0.47), we nd that the
stress response along the orthogonal direction (green squares)
demonstrates pronounced shear thinning behavior for Pe2 <
200. In contrast, we nd that the stress response along the
parallel direction (blue diamonds) linearly increases with Pe2
indicating that the suspension has already been shear thinned
by the rst ow. We highlight this anisotropic responses by
plotting the corresponding complex viscosity magnitudes |s/ _g|
in the inset of Fig. 6.
Soft Matter, 2014, 10, 1969–1976 | 1973
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At rst glance these results suggest that there is a signicant
anisotropic response due to the shear induced string structure.
However, close examination of the stress amplitude response
curves shows that the response along the orthogonal direction
displays the same Pe2 dependence as the quiescent sample
where no rst ow was applied. These results demonstrate that
the signicantly denser packing fraction along the orthogonal
direction due to the string structure (Fig. 2(g)) dose not enhance
the suspension stress response during the orthogonal modu-
lation. Furthermore, the data for the parallel modulation
(blue diamonds) are well t by the eqn (2) for an isotropic
suspension indicating that the string structure does not further
affect the rheology. In fact, the suspension's response to parallel
modulation appears to be dominated by hydrodynamic contri-
butions that are relatively insensitive to the suspension struc-
ture (Fig 5). Finally, if the difference between the parallel and
orthogonal stress responses was related to the string structure,
we would have expected that it would have persisted until the
second ow was strong enough to alter the string structure.
However, the data for both modulations begin to overlap at Pe2
z 200, which is still an order of magnitude smaller than Pe1.
Thus we are forced to conclude that while the rheology of the
string structure is anisotropic, this anisotropy does not result
from the shear induced string structure.
5 Discussion and conclusion

Using a novel biaxial confocal rheoscope, we measured the
rheological response of the vorticity-aligned string phase along
the ow and vorticity directions. This apparatus enabled us to
control the orientation and morphology of the sheared colloidal
suspension under connement. We showed that by varying the
phase between the two shear directions the sample transitions
from a string phase to an isotropic phase. By employing various
biaxial shear protocols, we found that despite its anisotropic
structure, the string phase rheology is quantitatively similar to
that of the isotropic suspension for the range of frequencies and
strain amplitudes explored. These result are in agreement with
previous work that shows hydrodynamic interactions play a
crucial role in the formation of the string phase and dominate
its rheological response.18 In addition, the measurements pre-
sented here demonstrate that for the tested volume fractions
(f ¼ 0.37 and 0.47) and degree of connement, the hydrody-
namic contribution to the shear stress is not signicantly
altered by the suspension microstructure. This structure-inde-
pendent hydrodynamic response is reminiscent of the weak
correlation between the structure and rheology in other
complex uids.43,46 For instance, it was recently shown that
layering in sheared suspensions of hard-sphere colloids does
not correlate with any rheological signature.43 As another
example, the strong viscoelasticity of the synthetic clay Laponite
does not depend on the fractal nature of its structure.46 It is
important to note that the viscosity under steady state condi-
tions can be different from the reported amplitude of the
complex viscosity under oscillatory shear. Therefore, it would be
useful to conduct further experiments to investigate the
1974 | Soft Matter, 2014, 10, 1969–1976
rheological anisotropy using a superposition of continuous and
oscillatory shear.

In the frequency sweep measurements, we do nd that
suspensions demonstrate an anisotropic shear thinning
behavior due to the applied rst ow. This anisotropic shear
thinning behavior in hard-sphere suspensions is remarkably
different from the isotropic shear thinning observed in polymer
solutions34 and is an important result in itself. This thinning
behavior is consistent with previous results that have demon-
strated that as the system is driven towards high Pe or at a shear
frequency above its relaxation rate, the Brownian stresses
saturate and the overall viscosity decreases. The observed
anisotropy in the stress response indicates that saturation of the
Brownian stresses only occurs along the rst ow direction. Our
data show that such effects are sufficient to account for the
measured anisotropic thinning behavior and that the added
effect of the string structure is negligible.

In conclusion, by using oscillatory superposition spectros-
copy, we nd no measurable difference in the stress response
between the isotropic and string phases. This nding implies
that the hydrodynamically dominated high-frequency stress
response model for the isotropic suspension can be applied to
the conned anisotropic shear-induced structure reported here.
Many studies conducted on other systems that also display
vorticity-aligned strings suggest pronounced changes in the
normal stress difference. It is interesting to ask whether such
normal stress differences arise for the hard sphere system we
study. Unfortunately, measurements of normal stress difference
can not be performed with our current setup. Thus, this ques-
tion remains unanswered. Nevertheless, the results presented
here show that anisotropic structure does not always lead to a
measurable anisotropic stress response at the frequency
explored. Moreover, they illustrate a powerful approach for
elucidating the underlying relationship between anisotropic
structure and anisotropic rheology in systems driven far-from-
equilibrium.

Appendix
Plate alignment and force measurement device calibration

To align the silicon wafer (top plate) and coverslip (bottom
plate), aer the sample is loaded in the shear cell we rst use the
confocal microscope to measure the gap height at the four
corners and the center of the gap. Then, we nely adjust three
differential screws on the shear cell to minimize the tilt of the
top plate. Aer the differential screws are adjusted, we measure
the gap height at the four corners and the center again to
examine how parallel the plates are. We continuously perform
this alignment process until two plates are aligned with less
than 0.0075�. Using the confocal microscope to measure the gap
variation during alignment, we nd the gap height variation
across the plate to be less than 0.5 mm, which is close to the
optical uncertainty along the vertical-axis (Y-axis) of the
confocal microscope. We nd that when there is a signicant
tilt between the two plates, or if one corner is lower than the
others, we observe inhomogeneous shear ows. No such ows
were observed in the experiments reported here.
This journal is © The Royal Society of Chemistry 2014
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To characterize the Force measurement device (FMD)
performance, we measure the ow curve of a viscosity standard
(VIS-RT5K-600, Paragon Scientic). With the given value of the
uid viscosity and the controlled shear rate, we are able to
calculate the corresponding shear stress s exerted on the FMD.
We nd linear relations between the applied shear stress and
the FMD output signal over the range 0.05 Pa < s < 2000 Pa for
both axes, which determine the sensitivity (0.05 Pa) of the device
Fig. 7. We also verify this calibration result by hanging weights
off the FMD. This weight hanging method enables us to obtain
the direct relation between the output signal of FMD and the
applied force. We nd that both calibrations are in excellent
agreement with one another.

It is important to rule out the possibility that the measured
shear stress is affected by other sources of force related to the
capillary forces and deformation of the cover slip. To minimize
the contribution of the capillary stress we overll the sample so
that the region within the shearzone is in contact with a
suspension reservoir. Since the change in uid boundary length
in the reservoir is negligible during shear this force becomes
Fig. 7 The shear stress calibration with shear cell experiment and
hanging weight method for X-axis (a) and Z-axis (b). The orange data
are the response of the axis that is along the shear flow direction, and
the green data represent the response of another axis. The blue data
are the voltage response measured with the hanging weight method.
The red curves are the linear fit to the data. The schematics of the
strained force measurement device are generated by the finite
element analysis.

This journal is © The Royal Society of Chemistry 2014
small relative to the shear stress. By measuring the viscosity of
simple uids at various gap heights showing that they are purely
viscous and indepenent of gap height, we are able to further rule
out the effect of such capillary forces.28 To determine the
deformation of the coverslip we monitored the gap during our
shear experiments. We nd that the gaps remain constant to
within our experimental resolution. We believe that this
stability results from the high viscosity of the suspension
solvent and the fact that our confocal imaging is conducted for a
single height rather than a continuous 3D scan which may tug
at the cover slip. Overall, we nd that the biaxial FMD, our
apparatus, and our experimental procedure allow for accurate
measurement of the shear stress response of the suspension.
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M. Čopič, So Matter, 2011, 7, 125–131.

10 J. Gennisson, T. Deffieux, E. Mace, G. Montaldo, M. Fink and
M. Tanter, Ultrasound Med. Biol., 2010, 36, 789801.

11 F. Pignon, A. Magnin and J. M. Piau, Phys. Rev. Lett., 1997, 79,
4689.

12 C. O. Osuji and D. A. Weitz, So Matter, 2008, 4, 1388–1392.
13 A. Montesi, A. A. Pea and M. Pasquali, Phys. Rev. Lett., 2004,

92, 058303.
14 E. K. Hobbie, S. Lin-Gibson, H. Wang, J. A. Pathak and

H. Kim, Phys. Rev. E: Stat., Nonlinear, So Matter Phys.,
2004, 69, 061503.

15 V. Grenard, N. Taberlet and S. Manneville, So Matter, 2011,
7, 3920–3928.

16 S. Lin-Gibson, J. A. Pathak, E. A. Grulke, H. Wang and
E. K. Hobbie, Phys. Rev. Lett., 2004, 92, 048302.

17 B. Snook, E. Guazzelli and J. E. Butler, Phys. Fluids, 2012, 24,
121702.
Soft Matter, 2014, 10, 1969–1976 | 1975

http://dx.doi.org/10.1039/C3SM52880D


Soft Matter Paper

Pu
bl

is
he

d 
on

 1
4 

Ja
nu

ar
y 

20
14

. D
ow

nl
oa

de
d 

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

17
/1

1/
20

15
 2

1:
50

:3
4.

 
View Article Online
18 X. Cheng, X. Xu, S. A. Rice, A. R. Dinner and I. Cohen, Proc.
Natl. Acad. Sci. U. S. A., 2011, 109, 63–67.

19 M. Grzelczak, J. Vermant, E. M. Furst and L. M. Liz-Marzán,
ACS Nano, 2010, 4, 3591–3605.

20 P. Jiang and M. J. McFarland, J. Am. Chem. Soc., 2004, 126,
13778–13786.

21 J. Baudry, C. Rouzeau, C. Goubault, C. Robic, L. Cohen-
Tannoudji, A. Koenig, E. Bertrand and J. Bibette, Proc.
Natl. Acad. Sci. U. S. A., 2006, 103, 16076–16078.

22 R. Pasquino, F. Snijkers, N. Grizzuti and J. Vermant, Rheol.
Acta, 2010, 49, 993–1001.

23 L. B. Chen, B. J. Ackerson and C. F. Zukoski, J. Rheol., 1994,
38, 193–216.

24 B. J. Ackerson, J. Rheol., 1990, 34, 553–590.
25 R. Pasquino, F. Snijkers, N. Grizzuti and J. Vermant,

Langmuir, 2010, 26, 3016–3019.
26 H. M. Laun, R. Bung, K. Hahn, E. Hädicke, R. Hingmann,
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