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We study the primary root growth of wild-type Medicago trunca-
tula plants in heterogeneous environments using 3D time-lapse
imaging. The growth medium is a transparent hydrogel consisting
of a stiff lower layer and a compliant upper layer. We find that the
roots deform into a helical shape just above the gel layer interface
before penetrating into the lower layer. This geometry is inter-
preted as a combination of growth-induced mechanical buckling
modulated by the growth medium and a simultaneous twisting
near the root tip. We study the helical morphology as the modulus
of the upper gel layer is varied and demonstrate that the size of the
deformation varies with gel stiffness as expected by a mathema-
tical model based on the theory of buckled rods. Moreover, we
show that plant-to-plant variations can be accounted for by biome-
chanically plausible values of the model parameters.

morphogenesis ∣ plant biomechanics ∣ biological chirality ∣
root growth and remodeling

Plant growth and crop productivity depend on the ability of
plant root systems to secure water and nutrients from the

heterogeneous terrestrial environment in which they grow. Soil
compaction resulting from agricultural activities or from environ-
mental changes such as drought impedes root growth and conse-
quently has severe negative effects on yield (1). As world popu-
lation continues to rise, plant breeding programs are challenged
with the need to increase crop yields while facing a decline in
agricultural soil quality including increased mechanical impe-
dance of soil. Thus, there is a need to better understand the stra-
tegies that roots employ to grow in mechanically heterogeneous
environments. Pioneering investigations have described the buck-
ling of roots traversing air gaps in soils (2–4) and measured the
forces generated during root growth (5–8); however, further pro-
gress has been hindered by the opaque nature of soil.

Here, we build on recent imaging techniques (9–14) to inves-
tigate the growth of roots through mechanically heterogeneous
environments. Our apparatus is distinct in that it employs a laser
sheet and a translational stage to rapidly scan the region of root
growth. Using this three-dimensional (3D) time-lapse imaging
system, we observe primary Medicago truncatula roots growing
through a transparent hydrogel composed of a compliant upper
layer and stiff lower layer. The structural heterogeneity in the
growth medium allows us to mechanically perturb the root in
a controlled fashion. Consistently, we find the roots deform into
a helical shape before penetrating into the lower layer as shown in
Fig. 1. Because the length of the helical region is comparable to
the length of the elongation zone in Medicago plants, it may be
supposed that this morphology is purely a biological process such
as circumnutation. However, our analysis reveals that (i) when
the root encounters the stiff lower layer, tissue near the root tip
twists via a remodeling process, and (ii) the mechanical buckling
of the twisted root within the gel accounts for the observed helical
shape. Collectively, these results demonstrate an important ex-
ample of the interplay between mechanics and morphology dur-
ing root growth in heterogeneous environments.

Experimental Procedures
Helical Root Growth.A two-layer medium 8 cm thick was prepared
using a transparent isotropic nutrient gel (15) solidified with
two different concentrations of Gelrite. Using an Anton Paar
rheometer, we measured the shear modulus and found GB ≈
1;500 Pa for the bottom layer and G ≈ 400 Pa for the top layer
(see SI Text). Thus, the abrupt increase in stiffness at the gel/gel
interface forms an elastic mechanical barrier to root growth.
Through most of the top layer, roots grew straight down; if pre-
sent, any root circumnutation was too subtle to observe. Just
above the interface, however, we observed pronounced helical
root deformations as shown in Fig. 1. Repeating the experiment,
we found the general root morphology was reproducible, though
each time there were variations in the shape and size of the he-
lical deformations. From our visual inspections, we also noted
that 74% of the root helices were right-handed, whereas the re-
maining 26% were left-handed (estimated uncertainty �9%).

Mechanical Interpretation.Based on our observations, we interpret
the helical deformation as a form of mechanical buckling that
occurs when the tip’s motion is halted by the stiff gel while
the root continues to elongate. To investigate how this driving
mechanism can lead to the observed root shapes, we developed
a simple experimental model consisting of an axially compressed
metal rod as a mechanical analog for the root. The rod, a nylon-
coated stainless steel wire 0.4 mm in diameter and 8 cm long, was
held vertically with the top end fixed to a stationary plate using
epoxy. Axial force was manually applied with tweezers by pushing
the lower end upward to compress the filament. When the wire is
compressed in air, the resulting long wavelength deformation
shown in Fig. 2A is consistent with the expected Euler buckling;
the deformation occurs in a plane (Fig. 2A, Inset) and extends the
full length of the wire.

In contrast, the root deformations were localized close to the
tip (Fig. 1). To produce this effect in the mechanical model, we
embedded the same wire in gelatin (Jell-O) and again applied
axial compression from the lower end leading to reversible defor-
mations. As shown in Fig. 2B and Inset, localized planar buckling
was induced near the region where force was applied. This can be
understood in the following manner. Buckling takes a sinusoidal
form if the longitudinal stress is uniform throughout (16). How-
ever, the wire surface and gel adhere without slip so that displa-
cements of the wire lead to shear deformations of the gel. Force
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balance shows that this gel shearing force accumulates along the
wire’s length, reducing the wire’s internal longitudinal stress and
attenuating the applied force. Thus, localized buckling occurs
when a finite portion of the wire is above the buckling threshold
while the rest is below (17). In order to produce a 3D helical
shape, we added one additional feature: We manually twisted one
end of the wire during compression. As Fig. 2C and Inset show,
this combination of compression and twisting within a supporting
medium produced a localized helical deformation like the shape
observed in roots.

To check whether a similar twisting mechanism is at play during
helical root growth, we fluorescently stained the epidermis of
roots with a solution containing 10 μg∕mL of 5-(4,6-dichlorotria-
zinyl)aminofluorescein and imaged them with a confocal micro-
scope. For roots grown in unlayered gels, cell files were aligned
vertically in columns along the entire length of the root (Fig. 3A
and Inset). In layered gels where the roots encountered the stiff
lower layer, cell files were twisted around the axis of the root in
the helical region (Fig. 3B), and untwisted everywhere else. The
localization of twisting shows that unobstructed root growth gen-
erally occurs without a visible preexisting chirality. Moreover, we
extracted and compressed several straight roots, observing planar
nonlocalized buckling in all cases, ruling out internal helicity as a
twisting mechanism. Additionally, the distribution of handedness

for the root morphology shown in Fig. 1F demonstrates that pas-
sive physical instabilities such as those seen during the coiling of
poured viscous liquids (18) are insufficient for generating root
twisting because they would lead to, on average, equal numbers
of either handedness. Finally, we note that differential elongation
as currently understood would only produce planar buckling.

Collectively, these observations suggest that the twisting in-
volved in helical buckling arises from a touch-activated biological
remodeling in response to axial loads. Though the microscopic
dynamics were not observable in our experiments, the process
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Fig. 1. (A–E) This gallery of contrast-enhanced digital photographs is a re-
presentative selection of the helical root growth observed at the interface
of compliant (above red line) and stiff (below red line) gels. They illustrate
both the consistency and variation of the phenomenon. (F) The number of
left- and right-handed helices were asymmetrical as shown by the histogram
(estimated uncertainty 1∕

ffiffiffiffi
N

p
).

Fig. 2. As a mechanical analog to root buckling, we axially compressed a
metal filament from the lower end. In all images, the top end is epoxied
to a plate (clamped boundary condition), while the lower end is held with
tweezers (hinged boundary condition). (A) Euler buckling is observed when
the filament is suspended in air. (B) Embedding the filament in a gel yields
dampened short wavelength oscillations. (C) Twisting the lower end of the
gel-embedded filament while applying compression yields a helical shape
similar to the roots. All insets are top-down views and show whether the
buckling was planar or 3D.

Fig. 3. Roots were stained and imaged with confocal microscopy to examine
the local surface structure. The inset illustrates schematically the develop-
mental physiology of the growth zone in roots. In particular, cells are ar-
ranged in vertical columns called cell files, which extend from the root cap
toward the soil surface. Primary root growth occurs when the cells near the
root cap undergo cell division and elongation, adding material within each
column. Consequently, the cell file pattern serves as an indicator for the his-
tory of root growth. (A) A section of a straight, undeformed root exhibits
vertical cell files. (B) In contrast, cell files within the helically deformed region
are wrapped around the root’s axis, indicating a twisting of the root.
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may be related to the thigmotropic-modulated gravitropism pre-
viously reported in Arabidopsis (19).

Model
The wire model provides a qualitative understanding of helical
root buckling. It is unclear, however, whether the mechanistic
interpretation of the root as a twisted buckled rod embedded in
a gel can capture the plant-to-plant variations typically seen in
our experiments (Fig. 1). Toward this end, we (i) developed an
experimental protocol for measuring variations in root morphol-
ogy, (ii) developed a mathematical formulation of the buckled
rod model, (iii) fitted the model to the data, and (iv) determined
whether the fitted values of the model parameters are biomecha-
nically plausible.

Measurements of Root Geometry. To quantify the plant-to-plant
variations in root morphology, we measured the shape of the he-
lical regions using a unique imaging technique we developed for
3D time-lapse imaging of growing roots (3D-TIGR). In essence,
our apparatus (Fig. 4) scans the region of root growth with a laser
sheet while taking image slices spaced every 0.150 mm. Each scan
took less than 5 min. The image slices were then processed in
IMARIS 6.0 to create a 3D reconstruction of the root and to
extract its spatial coordinates hxðzÞ; yðzÞ; zi.

The total imaging time for each root growth experiment
was approximately 100 h. To establish an experimental protocol
for measurement of the helical morphology, we recorded time-
lapse movies for 13 roots at a rate of one 3D scan per hour
(Movies S1–S3). These movies reveal that when steady growth
is impeded by the stiff gel, the root abruptly deforms in the trans-
verse direction as expected for a buckled rod. Moreover, because
the shape is already helical, root twisting must initiate before
buckling. Continued growth leads to the stereotypical shapes
shown in Fig. 1. After the tip penetrates into the lower layer, the
radial extent of the helix rapidly shrinks by 30� 10% (Fig. S1).
Thus, for the following analysis, we scanned each root after it
passed through the barrier and then linearly scaled the transverse
size of the helix by 1.43 to recover the buckled shape before
penetration.

To quantify the size of the helical deformation, we defined
two length scales, the average vertical extent of the helix hLi,
and the average squared radius of the helix hR2i. These longitu-
dinal and transverse measures are depicted schematically in the
insets of Fig. 5. We calculated hLi and hR2i from the scaled
3D-TIGR root coordinate data using

hLi ¼ ½R r2dz�2
R
r4dz

; hR2i ¼
R
r4dz

R
r2dz

; [1]

where r2 ¼ xðzÞ2 þ yðzÞ2 is measured from the central axis of the
helix, which was oriented to coincide with the z axis. Bounds of
the integrals were defined by noting the curvature of rðzÞ is zero
outside the helical region; however, we note the equations in
Eq. 1 are generally insensitive to the choice of endpoints.

For the gel system shown in Fig. 1 where G ≈ 400 Pa, there
were substantial root-to-root variations in both hLi and hR2i
(Fig. 5). To gain further insight into the range of possible root
morphologies and their dependence on G, we grew 67 plants
in gels where the top layer modulus was varied from about
100 to 1,500 Pa. For these gels, we saw no apparent dependence
of the root radius or length on the modulus; however, hLi and
hR2i were found to depend inversely onG (Fig. 5). Furthermore,
the spreads in hLi and hR2i at fixed G are also inversely related
to the modulus: At G ≈ 250 Pa there is a three-fold variation in
hLi and over an order of magnitude variation in hR2i, whereas
at G ≈ 1;500 Pa these variations are significantly reduced.

Fig. 4. This schematic illustration highlights the essential features of the
3D-TIGR apparatus used to quantify helical root buckling. An automated
data acquisition program translates the plant specimen through a laser sheet,
while a digital camera captures a series of images of reflected light. Because
the growth medium is transparent, only light scattered off the root is
recorded in the scan.

Fig. 5. Experimental measurements of the (A) longitudinal and (B) trans-
verse length scales of the helical root morphology as defined in Eq. 1 are
plotted against the top gel layer modulus G. We find that both length scales
decrease in stiffer gels, whereas their variations at a given stiffness tend to
increase in compliant gels. The contours were produced by numerical inte-
gration of the equations in Eq. 2 over a range of parameter values given
by the contours shown in Fig. 6. In particular, the spread in hLi was found
to correlate with variations in the bending modulus (Fig. 6B, green contours),
whereas the spread in hR2i was found to correlate with variations in the tip
compressive force (Fig. 6D, green contours). Red data points are roots that
violated the small deflection approximation used in themathematical model.
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Evidently, the root geometry and its variations are strongly de-
pendent on the stiffness of the growth medium.

Theoretical Model: Development and Quantitative Fitting. For simpli-
city, we modeled the root tissue from the helical region as a
homogeneous inextensible isotropic cylindrical rod. These as-
sumptions are consistent with experimental observations: (i) Root
cells are roughly 102 times smaller than the typical dimensions of
the helix (Fig. 3), (ii) the time scale for growth is much longer than
the buckling instability time scale (Movies S1–S3), and (iii)
neither the material properties nor root radius vary significantly
over the length of the helical region (20). These assumptions
allow the rod to be described by a constant bending modulus
EI with Young’s modulus E and moment of area I. Next, we
embed the theoretical rod in a linear elastic gel with shear mod-
ulus G. Based on the growth of fine hairs that anchor the root
to its growth medium (8, 20), we assume a no-slip boundary con-
dition. For simplicity, we neglect viscoplastic effects in the gel;
rheological measurements, elastic relaxation of roots after pene-
tration into the lower gel, and the absence of cavitation bubbles
support this assumption. Finally, we specifically focus on varia-
tions in root morphology and therefore exclude the dynamic
components of touch-activated twisting from our model.

The general data trends can be understood by basic scaling
arguments. A force T0 greater than the critical buckling force
Fc causes a rod to buckle into an arc of length L with amplitude
u and bending energy ∼EIðu∕L2Þ2 × L. The buckled rod causes
a volume ∼L3 of the embedding gel to deform with an energy
∼Gðu∕LÞ2 × L3. For a fixed force T0, we minimize the sum
of these energies with respect to arc length to find L ∼ ℓ, where
the characteristic length scale ℓ ≡ ðEI∕GÞ1∕4. Therefore, we
expect hLi ∼G−1∕4. Furthermore, the scaled transverse displace-
ment hR2i∕ℓ 2 increases with the scaled excess force ðT0 − FcÞ∕
F0, where the characteristic force scale F0 ≡ ½ðEIÞG�1∕2. Thus,
hR2i will have an inverse dependence on G due to the factor
of ℓ 2 and because F0 is larger in stiffer gels. These arguments
for hLi and hR2i predict smaller root deformations in stiffer gels.
Although the experimental measurements qualitatively agree, the
data have significant scatter and are too limited in range to test
the predicted scaling.

Using a more detailed application of the theoretical rod mod-
el, we test whether mechanical buckling can account for the entire
morphology of each root as well as the individual variability. Para-
meterizing the centerline of the rod as hxðzÞ; yðzÞ; zi, the key
mechanical quantities of interest are the longitudinal compres-
sive force TðzÞ and the axial moment MzðzÞ. Within the small
deflection approximation where the infinitesimal element of
arclength ds ≅ dz, the equations of equilibrium for the transverse
forces per unit length are

EIy 0 0 0 0 − ½MzðzÞx 0� 0 0 − ½TðzÞy 0� 0 ¼ −αy;

EIx 0 0 0 0 þ ½MzðzÞy 0� 0 0 − ½TðzÞx 0� 0 ¼ −αx: [2]

Primes indicate differentiation with respect to z, and α ≈ 2G is
the effective transverse spring constant per unit length due to
the gel elasticity (see SI Text for detailed derivation). In each
equation, the left-hand side includes terms for (i) the bending
force of the rod, (ii) the force required for torque balance when
the centerline is twisting, and (iii) the projection of TðzÞ along the
rod’s path. To calculate the dependence of hLi and hR2i on the
gel modulus, we first determine TðzÞ,MzðzÞ, and the appropriate
boundary conditions.

We find the compressive force TðzÞ by considering growth just
prior to buckling when the tip has made contact with the stiff
lower gel. Because growth is obstructed, root elongation, which
occurs at the tip, leads to a uniform longitudinal upward displa-
cement of the entire root. However, fine hairs anchor the root to

the embedding gel, leading to a downward linear restoring force
acting on each portion of the root. Assuming no slip between the
root and gel, force balance yields

TðzÞ ¼ −T0ð1 − z∕ZÞ; [3]

where T0 is the force applied on the root tip by the lower gel and
Z is the length of the root. Eq. 3 models the nonuniform com-
pressive force previously discussed.

In roots, the moment MzðzÞ arises from the response of indi-
vidual cells to their local loading conditions and likely results in a
remodeling of the root’s elastically unstrained reference state.
Because the in vivo details are unknown, we take a phenomen-
ological approach and calculate the required moment to produce
a given helical morphology by integrating the equations of equi-
librium over 20 experimentally measured root contours (see SI
Text). Generally, we find the moment is zero outside the helical
region, and nonzero within (Fig. S2). Following this trend, we
approximate the functional form as

MzðzÞ ¼ M0 ¼ constant: [4]

M0 has two contributions: (i) the previously discussed remodeling
of root tissue, and (ii) the root’s intrinsic elasticity. Although the
latter contribution gives rise to a twist per unit length Δτ beyond
the remodeled reference state, both are related to the observed
cell file twisting. If elasticity dominates the moment, then M0 ¼
CðzÞΔτðzÞ, where for a homogeneous isotropic inextensible rod,
the torsional rigidity CðzÞ ¼ ð2∕3ÞEI ¼ constant (21). Thus, the
expression ΔτðzÞ ¼ 3M0∕2EI ¼ constant is a bound on the rate
of cell file twisting.

To determine the boundary conditions and test the model, we
performed an iterative nonlinear least-squares fitting of the root
coordinate data from the helical region to Eqs. 2–4. Specifically,
we use the Levenberg–Marquardt algorithm to determine the
best-fit values for the model parameters EI, T0, and M0, as well
as the transverse forces and moments at both ends of the fitting
interval. This process was repeated for all roots; 49 of the 67
plants had convergent fits (Fig. 6A). Of the nonconvergent fits,
an inspection of the complete 3D-TIGR data revealed helical
morphologies that violated the small deflection approximation.

From the convergent fits, we infer the appropriate boundary
conditions. Generally, the transverse forces Fx ∝ x and Fy ∝ y
vanished at both ends. Similarly, the transverse moments
Mx ∝ y 0 0, and My ∝ x 0 0 were smallest at z ¼ 0, while the tangent
components x 0 and y 0 vanished at z ¼ Z. Collectively, these
results yield a hinged boundary condition (x; y; x 0 0; y 0 0 ¼ 0) at
the bottom of the rod, and a clamped boundary condition
(x; y; x 0; y 0 ¼ 0) at the top. Additionally, we found the majority
of best-fit values for EI and T0 were spread over two orders
of magnitude (Fig. 6 B andD, yellow crosses), while the estimated
twist per unit length 3M0∕2EI was clustered between 0.1 and
1.0 rad∕mm (Fig. 6E, yellow crosses).

Independent Checks of Fitted Parameters. To check whether the
values for the fitting parameters are biomechanically plausible,
we independently estimated EI, T0, and M0. Starting with the
bending modulus, we measured EI for 16 roots in a three-point
bending apparatus (see SI Text). Unfortunately, root tissue from
the helical region was too short and fragile to work with. There-
fore, we made measurements on the older, more lignified root
tissue between the helical growth and the base of the plant.
Because this tissue was typically 5–7 days old, it was thicker and
easier to work with. Indeed, we measured EIM ¼ ð3.5� 1.6Þ ×
10−7 Nm2 (SD) (Fig. 6B, black solid and dashed lines), which
agrees with the upper range predicted by fitting.

Concerning root-to-root variations, it is unlikely that Young’s
modulus E varies enough to account for the spread in the fitted
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EI. However, if each root has a distinct radius ρ in the helical
region, there can be significant variation in the moment of area
I ¼ ðπ∕4Þρ4 (Fig. 6B, green contours). To investigate this possi-
bility, we assumed E was constant and that differences between
the fitted EI and measured EIM were due solely to ρ. We then
calculated the predicted reduction in root radius relative to
mature tissue, ðEI∕EIMÞ1∕4. From the raw 3D-TIGR data, we
measured the average root radius in the helically buckled and
basal regions to find hρihelical∕hρibase. Comparing these quantities,
we find a strong correlation confirming that variations in the root
radius can account for spread in the fitted EI (Fig. 6C).

Although T0 is difficult to measure experimentally, estimates
of its value can be made from deformations in the gel interface
induced by the root tip. Detailed calculations (21) show that a
point force TD on a half-infinite elastic medium causes a dimple
of depthD and radius ρ. Here, ρ is the same as the root tip radius.
Because we have two elastic mediums, TD ¼ 4πðGþGBÞDρ,
where G and GB are the shear moduli of the top and bottom
gel layers, respectively. Visual observations show D ≈ 2� 1 mm,
and ρ ≈ 0.50� 0.25 mm.

Assuming T0 ≅ TD, we estimate the tip force along with upper
and lower bounds as a function of the top gel modulus (Fig. 6D,
black solid and dashed lines). Values range from 5 to 100 mN and
agree with 80% of the fits, consistent with the possibility that
some of the scatter in T0 arises from variations in G. Additional
estimates based on a Hertz contact or the gel fracture strength are
consistent with these results (see SI Text). Deviations from theo-
retical expectations can be accounted for by imperfect coupling
between the root and the gel or variations in the root tip’s angle of
attack resulting in a decreased normal force on the gel surface.

To check the range of best-fit values for the moment M0, we
used confocal images to measure the cell file angle with respect
to the root axis in the helically buckled region. Imaging several
roots, we found an average twist of τM ¼ ð2.1� 0.7Þ radians∕mm
(SD) (Fig. 6E, black solid and dashed lines). Comparing with the
fits, we see τM overestimates Δτ ¼ 3M0∕2EI. This overestimate
can be attributed to remodeling of the unstrained reference state
wherein an elastically relaxed configuration still exhibits twisted
cell files. Root-to-root variation in M0 can be attributed to differ-
ences in the growth rate of individual plants.

Collectively, the range of best-fit values for the bending mod-
ulus EI, the tip compressive force T0, and the moment M0 are
consistent with our independent checks and thus biomechanically
plausible. These findings demonstrate our simplified mathemati-
cal model is capable of quantitatively accounting for the varia-
tions observed in the root morphology.

Relating Model Parameters to Root Morphology. To identify the con-
nection between variation in specific model parameters and root
morphology, we used Eqs. 2–4 to simulate the dependence of hLi
and hR2i on EI, T0, and M0. Specifically, we performed sets of
numerical solutions while systematically varying the model para-
meters within the ranges determined by fitting. In our simulation,
we increased T0 until the rod buckled, at which point we evalu-
ated hLi and hR2i from the solution hxðzÞ; yðzÞ; zi.

Over the experimental range of G, we found that hLi depends
primarily on EI, hR2i depends primarily on T0, while neither
depends strongly on M0. Specifically, we fixed T0 ¼ 10 mN,
3M0∕2EI ¼ 0.45 radians∕mm, and varied EI over the range
illustrated by the green contours in Fig. 6B, producing a

Fig. 6. This figure shows the results of numerical fits of the equations in Eq. 2 to experimental root coordinate data. (A) Examples of best fits that converged
(ds ≅ dz). In each case, the green curve is experimental data, the black curve is the best fit, the red square is the root tip, and the scale is in millimeters. In the
lower portion, we show root coordinate data that was unfittable due to violations of the small deflection approximation (ds≇dz). (B) The best-fit values for the
bending modulus EI are plotted against G (yellow crosses). The majority of values are spread over two orders of magnitude. Here, ρ0 is the root radius corre-
sponding to the measured average bendingmodulus EIM (solid and dashed black lines). Variations in ρ0 by up to one-third account for most of the spread in the
fitted values of EI. Noting that ρ∕ρ0 ¼ ðEI∕EIMÞ1∕4 these results can be used to predict the tapering of the root radius. (C) Comparing the predicted reduction in
root radius ðEI∕EIMÞ1∕4 to the measured reduction hρitip∕hρibase, we find a correlation confirming that variations in the root radius account for the variations in
EI. (D) The best-fit values for the tip compressive force T0 are shown as a function of G (yellow crosses). The spread has substantial agreement with estimates
based on experimentally observed dimpling of the gel interface (solid and dashed black lines), though various factors can cause T0 to deviate from these
bounds. (E) The best-fit values for the estimated twist per unit length 3M0∕2EI are plotted as a function of G. The experimentally measured twist is plotted
for comparison (solid and dashed black lines).
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corresponding set of contours for hLi as a function of G
(Fig. 5A). Similarly, we fixedEI ¼ 2.2 × 10−8 Nm2, 3M0∕2EI ¼
0.45 radians∕mm, and varied T0 over the range illustrated by the
green contours in Fig. 6D. This produced a set of contours for
hR2i as a function of G (Fig. 5B). The dependence of hR2i on
EI and hLi on T0 was negligible and could not account for var-
iations at fixed G. Finally, we fixed EI ¼ 2.2 × 10−8 Nm2,
T0 ¼ 10 mN, and varied 3M0∕2EI from 0.1 to u0.7 radians∕mm
to produce a set of contours (Fig. S3) that showed weak sensitivity
of hLi and hR2i on M0.

From the contours in Fig. 5, we are able to read off the scaling
relations for hLi and hR2i. We find hLi ≈ 2.7ℓ, and hR2i≈
0.74ðℓ∕ZÞðT0∕F0Þℓ 2, where ℓ and F0 are the length and force
scales, respectively, defined previously in the scaling arguments.
Indeed, these numerically determined expressions agree well with
theoretical expectations.

Conclusions
Using 3D-TIGR, we studied the helical buckling of Medicago
truncatula roots due to a physical barrier in their growth medium.
This morphology could impact the fitness ofMedicago plants in at
least two ways. First, the helical geometry converts axial loads
into transverse loads, allowing the root to brace against the
surrounding medium and generate a greater force at the tip. Sec-
ond, touch-activated twisting induced by impenetrable barriers

such as rocks leads to a mechanical instability that redirects root
growth along the surface of the obstruction (22). Thus, helical
buckling could enhance the root’s ability to force through or
around physical barriers, allowing greater access to resources in
its environment.

Finally, we speculate that the root geometry observed here may
be related to the skewed sinusoidal growth pattern known as root
waving, in which roots growing on tilted 2D surfaces oscillate
rather than growing straight down the slope (23–25). Though
further experiments are necessary, we may discover in time that
this growth behavior, along with other plant morphologies, have
explanations rooted in the mechanics of growing materials.
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SI Text
In the following supplemental materials, we provide additional
details relating to our experimental observations of helical root
buckling as well as explicit calculations to guide the reader
through our mathematical model. This material is not necessary
to understand the flow of the main text; however, it attempts to
provide extra insights the reader may find useful.

Heterogeneous Gel Preparation. To prepare the two-layer gel
growth medium, first a 3-cm layer containing 5.00 g∕L of Gelrite
was poured into a 6.5 × 6.5 × 8 cm3 Magenta box and allowed to
set for 3 h. Subsequently, a second 5-cm layer was poured with
2.50 g∕L of Gelrite to yield a more compliant upper layer. To
systematically study the root morphology and its dependence
on the upper gel layer stiffness, we varied the concentration of
Gelrite from 1.25 g∕L to 5.00 g∕L. When measuring the gel’s
rheological properties, we varied the shearing frequency from
1 to 100 Hz. Over this range, the elastic moduli G quoted in
the text were independent of frequency and larger than the loss
modulus by approximately two orders of magnitude.

3D Time-Lapse Imaging of Growing Roots (3D-TIGR). Before imaging,
wild-type Medicago truncatula seedlings were germinated and the
growth medium was prepared as described previously (1). Form-
ing the layered hydrogel growth medium in a Magenta box, the
seedlings were planted and the sample container was mounted
on a linear translation stage controlled by a Parker Hann Corp
GV-U6E servo drive that was aligned to move the specimen
through a laser sheet. To produce the laser sheet, we employed
a 633-nm Thorlabs HRR050 laser and a half-cylinder lens. The
laser sheet, linear stage, and stepper motor were enclosed in a
growth chamber with a computer-controlled growth light. In a
sequence of actions executed by LabVIEW 8.20 using a National
Instruments PCI-6220 DAQ, our automated data acquisition pro-
gram collected image slices of the growing root at regular inter-
vals. Specifically, once an hour the program turned off the growth
light and repeatedly stepped the translation stage by 150 μm
while recording a digital image of the reflected laser light with
an Allied Vision Technologies Marlin F-080C USB camera. Each
complete scan took less than 5 min and produced a series of
image slices along the translation axis with a voxel resolution
of 66 × 66 × 150 μm3. These images were reconstructed using
IMARIS 6.0 to form a 3D visualization of the root’s growth in
space and time. The coordinates of the root for each frame were
then extracted using the IMARIS filament-tracking algorithm
and exported for analysis in MATLAB 7.0.

Relaxation of Roots. From the 3D-TIGR data, we found that the
transverse deflection hR2i (see Eq. 1 in the main text) tended to
increase after the onset of buckling. This continued until the root
tip penetrated into the lower layer, an event which coincided with
a sudden decrease in hR2i, which we interpret as an elastic relaxa-
tion of the root-in-gel system (Movies S1–S3). Measurements of
hLi and hR2i at the moment of maximum deformation and long
after the elastic relaxation showed that hLi was essentially unaf-
fected while hR2i decreased to nearly 70% its maximum value.
Fig. S1 shows data taken from 11 plants along with a linear fit.
As described in the main text, we use this relation to rescale the
root coordinate data to an earlier point in time, just before the
root passed through the barrier.

Measuring the Bending Modulus of Roots. To measure the bending
modulus EIM of Medicago roots, sections of 5- to 7-day old un-
deformed root tissue approximately 2–3 cm in length and roughly
constant radius (ρ ≈ 0.3–0.4 mm) were clamped at both ends and
immersed horizontally in a water bath. Small stainless steel or
copper weights were hung at the center of the root, and digital
photographs were taken of the resultant deflection δu. Using
software written in MATLAB, the deflection was measured as
a function of the applied force δF with corrections made to
account for a small, but nonzero, buoyant force. Staying within
the regime where deflection was linear with force, we used

EIM ¼ Z3

192

δF
δu

; [S1]

where Z was the length of root being measured, to calculate the
bending modulus (2). Averaging over 16 roots, we found EIM ¼
ð3.5� 1.6Þ × 10−7 Nm2. In our measurements, the deflection of
the roots was found to be symmetric about the point of applied
force. This suggests that the bending modulus is reasonably con-
stant over the region studied. Furthermore, because the roots
used were nearly 1 wk old, their radius ρ was larger than young
root tissue found near the tip. Thus, we expect the measured
value reported here to be an upper bound for the root tissue sub-
ject to helical deformations.

Detailed Scaling Arguments. In the main text, we presented two
scaling arguments to determine how the measured quantities
hLi and hR2i depend on the mechanical properties of the system.
We provide here a more detailed step-by-step approach. To begin,
we consider a rod embedded in a gel without slip such that
deflections of the former induce deformations of the the latter.
Both the rod and gel are treated as linearly elastic, homogeneous,
isotropic, and incompressible, so that the mechanical quantities
of interest are the rod’s bending modulus EI and the gel’s shear
modulus G. Next, we suppose the rod is subject to an axial load
and moment such that a localized helical buckling is induced (i.e.,
Fig. 2 in the main text). This geometry has a characteristic length
L and amplitude u. Because the system is buckled, the end-to-end
distance of the buckled region will be shorter than the total arc
length by an amount δz ∼ ðu∕LÞ2 × L ¼ u2∕L. For a fixed δz, we
seek expressions for L and u.

To determine the scaling of hLi, we consider the rod’s bending
energy per unit length, which is proportional to the bending mod-
ulus times the curvature squared,

Urod∕L ∼EI
�

u
L2

�
2

¼ EI
δz
L3

: [S2]

Because the rod and gel are coupled without slip, a volume of gel
will be sheared by the rod’s deformations. In the frame of the
undeformed system, the volume affected will scale as ∼L3, and
the corresponding strain energy density will be

Ugel∕L3 ∼G
�
u
L

�
2

¼ G
δz
L
; [S3]

where the strain ∼u∕L. This expression can be reexpressed as a
more familiar Hookean-spring type formula: Ugel ∼ ðGLÞu2.
Here, GL is the effective spring constant of the rod in gel,
and u is the gel’s displacement. Thus, the total energy of the
rod and gel will scale as the sum of Eqs. S2 and S3:
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U tot ∼EI
u2

L3
þGLu2 − Tδz; [S4]

where the third term is the work done by the external force T that
induces buckling. For a deflection with fixed δz, the length L that
minimizes Eq. S4 is given by L ∼ ðEI∕GÞ1∕4 ≡ ℓ. Here, ℓ can be
interpreted as the natural length scale determined by the me-
chanical quantities of the system. Noting that the experimentally
measured hLi is comparable to the characteristic length of the
deformation L, we conclude hLi ∼G−1∕4.

To find an analogous scaling relation for hR2i, we substitute
the expression for L that minimizes the energy back into Eq. S4,
U tot ∼ ðF0 − TÞδz ¼ −ΔFδz, where F0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEIÞGp
is the natural

force scale of the system. Just beyond the buckling threshold
when ΔF is small, higher-order terms in δz arising from the rod’s
inextensibility, which were previously considered small, become
important. The first correction to the rod’s arc length is
∼ðu∕LÞ4 × L ¼ δ2

z ∕L, so that the total energy is U tot ∼ −ΔFδzþ
cF0δ2

z ∕L, where c is a constant of order unity. Minimizing with
respect to δz yields

�
u
ℓ

�
2

∼
ΔF
F0

: [S5]

The experimentally measured transverse deflection hR2i is, by
definition, a measure of u2. Therefore,

hR2i
ℓ 2

∼
ΔF
F0

: [S6]

Eq. S6 shows hR2i ∼ ℓ 2ðΔF∕F0Þ, or in terms of the shear mod-
ulus G,

hR2i ∼ 1

G
: [S7]

Thus, the magnitude of the transverse deflections becomes smal-
ler as the gel stiffness increases.

Explicit Derivation of the Buckled Rod Model. To model the helical
root morphology observed in our experiment, we used a theory
describing twisted elastic rods subject to compression. Though
the equations of equilibrium were quoted in the main text, we
provide a detailed derivation here to clarify the result. Our
approach follows Landau and Lifshitz (2).

We begin by abstracting the root-in-gel system to that of an
incompressible rod embedded in a gel and anchored in such a
fashion as to prevent “slippage” through the surrounding medium
in both the transverse and longitudinal (axial) directions. The rod
has a circular cross-section of radius ρ0, length Z, and its position
in space is given as a function of arc length s by the vector
~rðsÞ ¼ hxðsÞ; yðsÞ; zðsÞi. If an infinitesimal length of the rod is
ds ¼ ðdx2 þ dy2 þ dz2Þ1∕2, then the unit vector tangent to ~r is
t̂ ¼ d ~r∕ds. Although this vector can be used to describe bending,
it does not account for twisting of the rod about its axis. For this,
we use ϕðsÞ to express the net angle by which each part of the rod
has been rotated. The amount of turning per unit length, or its
torsion, is

τðsÞ ¼ dϕ∕ds: [S8]

Two key quantities to describe the mechanical equilibrium of
the rod are the local internal force ~FðsÞ and the local internal
moment (torque) ~MðsÞ. Indeed, these two functions are used
to relate the externally imposed forces and moments to the bend-
ing and twisting of the rod. We do this by first expressing the
moment in terms of the rod’s deformations through its elastic
constants

~M ¼ EIt̂ ×
dt̂ðsÞ
ds

þMzðsÞt̂; [S9]

The first term on the right represents bending and is proportional
to the curvature dt̂∕ds, while the second term represents twisting
and is the projection of the total vectoral moment along the rod’s
axis. For a homogeneous, isotropic, and incompressible rod, the
bending modulusEI is the product of Young’s modulusE and the
moment of area I ¼ ðπ∕4Þρ4

0 .
At least two additional features could be added to the model

regarding the torsional moment MzðsÞ. First, the actual root is
lengthwise anisotropic and could be approximately treated as a
fiber composite in which each root cell file is inextensible. If
the cell files are twisted, then we would expect a twist/extension
coupling in the root’s elastic response. Though we mention this
possibility, our model does not include twist/extension coupling
because our experiments were unable to resolve the microscopic
details of twisting during growth. Thus, our model remains agnos-
tic to the dynamics during growth and focuses on the static struc-
ture of the root instead.

A second possible feature to add to the model would be the
effect of biological remodeling of the root tissue. In this case,
we would use the expression MzðsÞ ¼ CðsÞðτðsÞ − τ0ðsÞÞ ¼
CðsÞΔτðsÞ. Here, CðsÞ is the torsional elastic constant, τðsÞ is
the rotational strain, and τ0ðsÞ is the rotational strain reference
state. While both rotational strains are measured with respect to
an untwisted configuration (in units of radians/length), the refer-
ence state represents the effect of remodeling by shifting the elas-
tically unstrained state. Thus, for nonzero τ0ðsÞ in the absence of
any external moments, a rod would appear to be twisted, yet
experience no elastic strain because it is in the relaxed configura-
tion. Because the reference state τ0ðsÞ is not observable in our
experiments, we formulate the equations of equilibrium in terms
of MzðsÞ only. When interpreting our results in the main text, we
compare Δτ to the observed cell file twisting in an effort to
determine the biomechanical plausibility of the model. We stress
that our results remain agnostic to the underlying and currently
unknown biological processes involved in root twisting.

In mechanical equilibrium, external forces and torques are
related to ~FðsÞ and ~MðsÞ through

d ~FðsÞ
ds

þ ~KðsÞ ¼ 0; [S10]

d ~MðsÞ
ds

þ ~tðsÞ × ~FðsÞ ¼ 0; [S11]

where ~KðsÞ is the externally applied force per unit length. To
understand the second equation, we note that if a force ~FðsÞ that
is not aligned with t̂ is applied to the rod, then an infinitesimal
torque d ~rðsÞ × ~FðsÞ will be produced. This must be balanced by
the internal moment d ~MðsÞ, so that summing these two terms and
dividing by ds yields Eq. S11.

In the present case, we will consider the unstressed rod to be
straight and aligned with the z axis such that its end points are
located at z ¼ 0 and z ¼ Z. Furthermore, we will make use of
the small deflection approximation. Mathematically, this means
s → z in all formulas, but physically speaking, this means all the
deformations of the rod are small. Differentiating Eq. S11 twice
and making use of Eq. S11, we find

EI
dt̂
dz

×
d2 t̂
dz2

þEIt̂ ×
d3 t̂
dz3

þ d2

dz2
ðMzt̂Þ ¼

d
dz

ð ~F × t̂Þ: [S12]

For small deflections, the first term on the left is negligible and
can be set to 0. Expanding the right-hand side of Eq. S12 and
substituting Eq. S10 gives
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EIt̂ ×
d3 t̂
dz3

þ d2

dz2
ðMzt̂Þ ¼ ~F × t̂ 0 − ~K × t̂: [S13]

In our situation, the external force ~KðsÞ arises from deformations
of the gel, which we model as a linearly elastic medium. Conse-
quently, when the root is displaced from its initially straight con-
figuration, the gel exerts a restoring force

~KðzÞ ¼ −hαuxðzÞ; αuyðzÞ; αzuzi; [S14]

where the first two components are the displacements perpendi-
cular to the roots axis and uz is the longitudinal component. The
effective gel spring constants per unit length in the transverse and
longitudinal directions are α and αz, respectively. Furthermore,
the internal forces are given by ~FðzÞ ¼ hFxðzÞ; FyðzÞ; TðzÞi,
where TðzÞ is the longitudinal force throughout the rod. In
the small deflection approximation, however, terms proportional
to Fx and Fy are of second order in smallness and can be ne-
glected. This can be seen by noting t̂ ¼ hu 0

x ; u 0
y ; 1i and expanding

Eq. S13 to find the linearized equations of equilibrium:

EIu 0 0 0 0
y − ðMzðzÞu 0

x Þ 0 0 − ðTðzÞu 0
y Þ 0 þ αux ¼ 0;

EIu 0 0 0 0
x þ ðMzðzÞu 0

y Þ 0 0 − ðTðzÞu 0
x Þ 0 þ αuy ¼ 0; [S15]

where we have used the prime notation to indicate dð…Þ∕dz. The
equations in Eq. S15 involves only two constants, EI and α, in
addition to four functions of the longitudinal coordinate z:
uxðzÞ, uyðzÞ, TðzÞ, and MzðzÞ.

Calculation of the Effective Gel Spring Constants. Given an infinite
isotropic 3D elastic medium with a bulk modulus B much larger
than the shear modulus G, what is the effective spring constant
felt by a long 1D filament displaced in the directions parallel and
perpendicular to its axis? To answer this question, we use the
known elastic response of the medium in terms of displacement
due to a point-like force at the origin given by Green’s tensor (2)

gijðx; y; zÞ ¼
1

4πG

�
δij
r
−

1

4ð1 − νÞ
∂ 2r

∂xi∂xj

�
; [S16]

where δij is a Kronecker delta-function, rðx; y; zÞ ¼
ðx2 þ y2 þ z2Þð1∕2Þ, and the Poisson ratio ν ¼ 1∕2 in the limit
B ≫ G. That is, a force Fj in the direction j causes a displace-
ment ui ¼ gijðx; y; zÞFj in the i direction of the medium at hx; y; zi.
In cylindrical coordinates,

½gij� ¼
1

4πGr

1 − γ z2

r 2 0 γ ρz
r 2

0 1 − γ 0

γ zρ
r 2 0 1 − γ ρ2

r 2

2

6
4

3

7
5; [S17]

where r is the distance away from the location of the point force
and γ ¼ 1∕4ð1 − νÞ ¼ 1∕2 for an incompressible medium.

We now consider the case of a 1D rod in a 3D elastic medium.
If ~KðzÞ is the force per unit length on the rod due to the medium,
then − ~KðzÞ is the force on the medium due to the rod. Treating
this as a sum of point-like forces and using the fact that the gel is a
linear medium, we can use the principle of superposition to write
the net displacement at any position. For simplicity, we imagine a
force ~K uniform in z, corresponding to a response of the gel ~u.
Assuming the rod and medium are constrained to move together
(i.e., a no-slip boundary), we can obtain a force-displacement
relation and extract the effective gel spring constant per unit
length. Using Eq. S17, we calculate ui ¼ ∫ gijðρ; z − z 0ÞKjðz 0Þdz 0
accomponent

uρ ¼
Z

L

−L
gρρðρ; z − z 0ÞKρdz 0 ¼ Kρ

4πG
ln
�
L
a

�
; [S18]

where L is the wavelength or scale over which the deviation
occurs, and a is a small-distance cutoff of order the rod radius
(for roots a ≈ 0.25 mm). Therefore, Eq. S18 implies

α ≈
4πG

lnðL∕aÞ [S19]

in the limit L∕a ≫ 1. A similar calculation with the force parallel
to the rod gives

αz ≈
2πG

lnðL∕aÞ : [S20]

If we substitute L → Z ≈ 10 cm in these expressions, we have

α ≈ 2G; and αz ≈G: [S21]

It should be noted that these expressions for the effective gel
spring constants are approximate for at least three reasons. First,
the theory is greatly simplified by neglecting any possible plastic
deformations of the gel caused by root growth. Second, the effec-
tive scale L of the logarithm in Eqs. S19 and S20 is actually a
function of the root morphology and changes in time as the root
deforms. Indeed, it may be more appropriate to have L ≈ ℓ≈
1 cm for the transverse displacements associated with α. Third,
the denominator of Eqs. S19 and S20 can contain a constant of
order unity added to the logarithm that arises from the different
ways one can define the ratio L∕a. This factor may be significant
for the relevant experimental values. Therefore, we estimate an
overall uncertainty in the gel spring constants of order ∼50%.

The Compressive Force TðzÞ and its Role in Buckling. We next work
out the expected functional form for TðzÞ (Eq. 3 in main text). A
theoretical approach is necessary because the 3D-TIGR data
does not provide sufficient information to reliably reconstruct
the longitudinal force profile TðzÞ; it would require measure-
ments of the root’s z displacements. We will also show why the
root’s buckling instability is localized near the tip (Figs. 1 and
2 in main text and refs. 3 and 4).

Consider what happens when the root elongates while its tip is
stuck at the lower gel interface in our root growth experiments. A
portion D of that extra length goes into displacing the interface,
which exerts an effective spring force on the tip (the formula for
TD is given in the main text in the section Independent Checks of
Fitted Parameters). The force due to the lower gel determines the
longitudinal force at the tip, Tð0Þ. Until the buckling instability is
reached, the rest of the elongation can only go into a constant
uniform longitudinal shift uz of the root, which we model here
as an inextensible rod. The longitudinal restoring force Kz, due
to the gel, pushes in the opposite direction, so that TðzÞ decreases
with z. It is given by Eq. S10 as KzðzÞ ¼ −αzuz, which is constant
along the length. Substituting the force into Eq. S10, we find

dT
dz

¼ αzuz: [S22]

Upon integration, we obtain

TðzÞ ¼ −αzZuzð1 − z∕ZÞ þ T top; ¼ −T0ð1 − z∕ZÞ þ T top;

[S23]

where T0 ¼ αzZuz, and Tðz ¼ ZÞ ¼ T top is the boundary condi-
tion at the top of the gel where an effective spring constant relates
uz to T top. Given the effective spring constants at either end of
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the root and the spring constant due to longitudinal gel displace-
ments kL ¼ αzZ, it is possible to solve for how the elongation
Dþ uz and the tip force Tð0Þ ¼ T0 þ T top gets partitioned. Note
that although the uniform displacement uz implies a deformation
of the upper gel surface by that amount, any such deformations
were so small as to be invisible. We infer that T top is small, either
because the root is long enough that αzZ dominates the effective
spring constant at the upper end, or because the approximation of
an inextensible straight rod is inexact. Therefore, for simplicity,
we adopt the assumption thatT top ¼ 0, which gives the functional
form used in the main text.

The above picture is valid only until T0 reaches the buckling
threshold; what happens then? We can make contact with prior
theory (2–4) that assumed a uniform TðzÞ and found a buckling
threshold when TðzÞ ¼ constant ∝ F0, the instability being a si-
nusoidal buckling at a wavelength proportional to ℓ; here, F0 and
ℓ are the force and length scales constructed from EI and G in
the scaling arguments. In our problem, crudely speaking, buckling
occurs only once TðzÞ > F0 along a length of order ℓ. Thus, the
actual threshold is strictly greater than F0 by an amount propor-
tional to dT∕dz, and the initial buckling is confined to a half-arc
of oscillations over a length ∼ℓ. This is the same key observation
made qualitatively in the main text, in connection with the shape
of deformations of the wire embedded in gelatin.

After buckling, the added arc length due to transverse devia-
tions takes up the largest portion of the elongation. Quantita-
tively, this can be seen by comparing the effective spring con-
stant for longitudinal displacements of the root tissue kL to the
effective spring constant for transverse deflection kT ≈ Fc∕ℓ∼
½ðEIÞG3�1∕4. Upon simplification, we find that kT∕kL ∼ ℓ∕
Z ≪ 1. Thus, new growth is primarily added to the buckled region
because the unbuckled tissue above the helical region is held by a
stiff spring force due to the root–gel coupling. Indeed, this is con-
sistent with the more approximate clamped boundary condition
used in the main text for our numerical simulations. Furthermore,
in the postbuckling regime uz is a nonuniform function of z. How-
ever, as long as the small deflection approximation is valid, the
uniform part of uz still dominates, so we assume Eq. S23may still
be used for TðzÞ in the buckled state.

In the main text, we estimate the value of T0 by modeling its
effect on the gel as that of a point-contact on a half-infinite med-
ium. Two additional estimates can also be made. The first esti-
mate is an alternative model using a Hertz contact. For a rigid
sphere with radius ρ exerting a force T0 on a half-infinite elastic
medium,

T0 ¼
8

3

G
1 − ν

D3∕2ρ1∕2; [S24]

whereG is the gel shear modulus, ν is the gel’s Poisson ratio, and
D is the depth of the dimple. Substitution of numerical values
show that this estimate gives similar results for T0 as those re-
ported in the main text. The second estimate places an upper
bound on T0 by considering the force required to penetrate into
the lower gel layer. Assuming the gel fractures when the strain
D∕ρ ∼ 1, we find T0 ≤ 4πðGþGBÞD2, which yields a range
of 36 to 77 mN forG ¼ 100 to 1,500 Pa, consistent with the upper
dashed line in Fig. 6D of the main text. Further variation for fixed
values ofG can arise from the sharpness of the root tip, the angle
of attack, and diameter of the root.

Determination of the MomentMz.To discern the functional form of
MzðzÞ, we integrated Eqs. S10, S11, and S14:

FxðzÞ ¼ −α
Z

Z

z
uxðẑÞdẑ; FyðzÞ ¼ −α

R
Z
z uyðẑÞdẑ;

MzðzÞ ¼
Z

Z

z
½ ~FðẑÞ × ~tðẑÞ�zdẑ; [S25]

where the notation ½⋯�z means taking the z projection, and
experimental data was supplied for the coordinates uxðẑÞ and
uyðẑÞ. Performing this calculation over 20 roots, we found a sig-
nificant amount of variation from root to root as shown in Fig. S2.
Nevertheless, some general features were common. In particular,
above and below the helical region Mz went to zero, while in the
helical regionMz tended to fluctuate. We numerically experimen-
ted with two expressions for the moment, Mz ¼ M0 sinðπz∕ZÞ
and Mz ¼ constant. The former is more correct in light of our
understanding of the boundary conditions and Fig. S2; however,
we chose to use the simpler latter expression because both pro-
duced similar results for the model fitting and the simulation dis-
cussed in the main text.

An Alternate Mechanism for Buckling Localization.As pointed out in
the main text, the equations in Eq. 2 assume a uniform bending
modulus EI. However, this assumption may be questionable for
real roots. Developmental gradients and tapering of the root dia-
meter can affect bothE and I, making them functions of position.
Thus, one could imagine an alternate mechanism for the locali-
zation of buckling: A local decrease of the root’s modulus near
the tip makes it more susceptible to compressive forces and there-
fore more prone to buckling. Whereas in the main text we
assumed EI was constant and allowed TðzÞ to vary, this proposed
mechanism reverses the roles so that EIðzÞ varies and TðzÞ ¼ T0

is constant. We now ask whether experiments can distinguish
between these two scenarios.

To see how we can rule out variations in EI as the sole source
of localized buckling, we recall that at the root tip, an axial force
induces a dimple in the lower gel layer. When the axial force is
constant throughout the root, there will be an analogous “pim-
ple” in the top gel surface, and, moreover, it will be larger than
the dimple because (i) the top gel modulus is less than the lower
gel modulus and (ii) instead of a gel/gel interface, we have a gel/
air interface. The height of this pimple can be estimated using the
same formula used in the main text to relate the force exerted by
the root tip to the dimensions of the dimple. Thus, we have
D ¼ T0∕4πGρ. Taking G ¼ 1 kPa, T0 ¼ 40 mN, and ρ ¼
1.0 mm, we find a pimple height of 3.2 mm. As previously men-
tioned, there was no observable pimple at the top gel surface. We
therefore conclude that Tðz ¼ ZÞ ≈ 0, which is inconsistent with
Tðz ¼ 0Þ ¼ T0. Therefore, variations in EI can not solely be the
source of localization.

A more realistic model for the localization of buckling includes
variations in both the bending modulus and the longitudinal
force. The question then becomes which is the dominant effect.
To determine this experimentally, we manually compressed in air
several roots grown in unlayered gels. Because the axial load was
constant throughout, any localization of buckling or longitudinal
asymmetry would be due to a spatially varying bending modulus.
In all cases, we found nearly symmetric nonlocalized shapes. This
suggests variations in EIðzÞ are not playing a significant role in
buckling localization.

To explore the consequences of a model combining TðzÞ and
EIðzÞ, we first need an expression for spatial variations of the
bending modulus. One option is to use the experimentally ob-
served variations in root radius (Fig. 6C in main text). From
the figure, we see the ratio of the root radius in the helical region
to the radius near the base is greater than 2/3 in more than half of
the roots. To produce a linear tapering where the root radius ratio
is exactly 2/3, we use the expression ρðzÞ ¼ ρ0ð1þ z∕2ZÞ, where
ρ0 is the effective radius of the tip, and z ¼ Z is the base of the
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plant. This model yields a position-dependent bending modulus
EIðzÞ ¼ EIð1þ z∕2ZÞ4. Though crude, it captures the essential
point: EIðzÞ can be substantially smaller near the tip than near
the base as illustrated by the z4 dependence.

Because the bending modulus varies with position, the natural
force scale for buckling FcðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIðzÞGp

will too. Therefore,
the nondimensional longitudinal force TðzÞ∕F0ðzÞ gives a local
estimate of how much force above the buckling threshold each
portion of the rod experiences. To determine the relative contri-
butions to buckling localization, we compare T0∕F0ðzÞ to
TðzÞ∕F0ðzÞ, and TðzÞ∕F0 to TðzÞ∕F0ðzÞ. In the first case,

T0

F0ðzÞ
∕
TðzÞ
F0ðzÞ

¼ T0

TðzÞ ¼
1

1 − z∕Z
; [S26]

while in the latter,

TðzÞ
F0

∕
TðzÞ
F0ðzÞ

¼ F0ðzÞ
F0

¼ ð1þ z∕2ZÞ2: [S27]

In the helical region where z∕Z ≪ 1, we find that both Eqs. S26
and S27 are approximated by 1þ z∕Z. Thus, for the functional
forms used here, the spatially varying longitudinal force and
bending modulus both contribute equally to buckling localization.
However, we can explain our experimental observations with only
spatial variations in TðzÞ. The converse is not true; as described
above, a theory with only spatial variations inEIðzÞ is inconsistent
with our experimental observations. Thus, our mathematical
model for helical root buckling adopts the minimum number
of elements.

Model Fitting and Boundary Conditions. When we fit the model
equations to the experimental data and extracted out the values
for the parameters EI, T0, and M0, a potentially dangerous
assumption was made: The coordinate system aligned with the

undeformed root is the “correct” coordinate system. Put another
way, our model equations depend on the absolute displacement
of the rod from the reference axis h0; 0; zi to generate the gel
restoring forces acting on the buckled root. If our assumed coor-
dinate system is tilted by some small angle at z ¼ 0, this could
potentially lead to large spurious displacement forces at the
far end where z ¼ Z. In turn, this would be expected to produce
erroneous results for the distribution of fitted parameters EI, T0,
Mz discussed in the main text as well as the measured values of
hLi and hR2i.

On one hand, this objection can be refuted by the experimental
movie data where the small deflection approximation held
(Movies S2 and S3). In these cases, the direction of the unde-
formed root tissue and the centerline of the helical deformation
reasonably coincide. On the other hand, we still wanted to ad-
dress the concern more directly. Thus, we reanalyzed the data
with deliberately tilted coordinate systems and explored the ef-
fects onEI,T0, andM0. We found the values of these parameters
were affected by at most a factor of 2 for angular deviations of
�12°. This is a relatively small difference relative to the spread
over the ensemble of roots, and ought not produce significant
effects in our analysis.

Variation with Torsion. From the results of model testing, we found
a range of best-fit values for the inferred twist per unit length
3M0∕2EI clustered around 0.1 to 1.0 radians∕mm. Holding
the bending modulus EI and tip tension T0 fixed while system-
atically varying the twist produced the plots for hLi and hR2i
shown in Fig. S3. We found the range of 0.1 to 0.7 radians∕mm
caused negligible variation in the predicted shape of the helically
buckled rod configuration. Moreover, at higher values in the
range of 1.0 to 2.0 radians∕mm, the solutions failed to resemble
experimental data. Evidently, the torsion alone is unable to
account for the variations in hLi and hR2i.
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Fig. S1. Noticing that the roots elastically relax after penetrating into the lower layer, we used 3D time-lapse movie data to identify the moment of maximum
deformation. Measuring hLiM and hR2iM at this time and comparing to the values of the root’s final configuration, hLiF and hR2iF , we found that (A) the
longitudinal extent was largely unaffected while (B) the transverse size decreased to nearly 70% it’s maximum size.
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Fig. S2. To determine the functional form of the axial moment, we used the equations in Eq. S25 to explicitly calculate MzðzÞ for 20 roots. The results of this
procedure shown here illustrate the plant-to-plant variation. In each case, the root tip is located at z ¼ 0 and the range of z corresponds to a region slightly
larger than the helical deformation. The red dashed lines correspond to Mz ¼ 0 to help guide the eye.

Fig. S3. Experimental measurements for the (A) longitudinal and (B) transverse length scales of the helical root morphology are plotted against the top gel
layer modulus G. When comparing our data to a theoretical model, we found that certain roots were in violation of the assumed small deflection approx-

Silverberg et al. www.pnas.org/cgi/doi/10.1073/pnas.1209287109 7 of 9

http://www.pnas.org/cgi/doi/10.1073/pnas.1209287109


imation; these data are colored red. The contours were produced by numerical integration of our model equations for fixed EI, T0, and variable 3M0∕2EI. The
contours shown here are for values in the range of 0.1 to 0.7 radians∕mm. Values higher than this produced solutions to the buckled rod equations that did not
accurately resemble the experiments.

Movie S1. The growth of a primary Medicago root in a compliant (G ∼ 250 Pa) gel. Because the root exhibits such large deflections, it’s morphology is not
captured by the mathematical model. Variations in the apparent root radius are in part due to light scattering, movement in-and-out of the imaging plane, and
image processing filters used during the 3D reconstruction.

Movie S1 (AVI)

Movie S2. The growth of a primary Medicago root in a stiff (G ∼ 1;250 Pa) gel. This root obeys the small deflection approximation used in our model and is
therefore captured by Eqs. 2–4 in the main text. Variations in the apparent root radius are in part due to light scattering, movement in-and-out of the imaging
plane, and image processing filters used during the 3D reconstruction.

Movie S2 (AVI)
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Movie S3. Multiple viewing angles of a primary Medicago root in a gel of intermediate stiffness (G ∼ 1;000 Pa). This root obeys the small deflection approx-
imation used in our model and is therefore captured by Eqs. 2–4 in the main text. Variations in the apparent root radius are in part due to light scattering,
movement in-and-out of the imaging plane, and image processing filters used during the 3D reconstruction.

Movie S3 (AVI)
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