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Origami structures with a critical transition to
bistability arising from hidden degrees of freedom
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Christian D. Santangelo3, Robert J. Lang5, Ryan C. Hayward2 and Itai Cohen1

Origami is used beyond purely aesthetic pursuits to design
responsive and customizable mechanical metamaterials1–8.
However, a generalized physical understanding of origami
remains elusive, owing to the challengeof determiningwhether
local kinematic constraints are globally compatible and to an
incomplete understanding of how the folded sheet’s material
properties contribute to the overall mechanical response9–14.
Here, we show that the traditional square twist, whose crease
pattern has zero degrees of freedom (DOF) and therefore
should not be foldable, can nevertheless be folded by accessing
bending deformations that are not explicit in the crease
pattern. These hidden bending DOF are separated from the
crease DOF by an energy gap that gives rise to a geometrically
driven critical bifurcation between mono- and bistability.
Noting its potential utility for fabricatingmechanical switches,
we use a temperature-responsive polymer-gel version of the
square twist to demonstrate hysteretic folding dynamics at the
sub-millimetre scale.

A key theme unifying the study of biopolymer gels15,16, biological
tissues17, kinematic mechanisms18–21, granular media22–24, network
glasses25 and architectural elements26 is the competition between the
number of internal DOF,Nf, and the number of internal mechanical
constraints, Nc. The macroscopic behaviour of these systems in
the absence of self-stresses27,28 is said to be underconstrained when
Nf>Nc, overconstrained when Nf<Nc, and isostatic, or marginally
stable, when Nf=Nc. This framework, which was initially laid out
by J. C. Maxwell in 1864, has been instrumental in understanding
a diverse range of mechanical phenomena in constraint-based ma-
terials, including rigidity percolation16, topologically protected zero
energy modes19, nonlinear elasticity16 and shock waves24. A feature
intrinsic to real physical materials but often left out of simpler
models is the existence of a hierarchy of DOF, each with its own
associated energy scale. When the details of these internal features
are incorporated, systems can be overconstrained and rigid with
respect to low-energy loading, but underconstrained and compliant
as higher-energyDOF are accessed. Thus,Nf should be thought of as
a variable quantity that changes with the experimental energy scale.

Although these observations are fairly general, the emergent
mechanical phenomena that can be found in materials as the
DOF hierarchy is probed has not been well examined. Indeed, this
problem plays out in origami mechanics, where crease patterns
that are mathematically unfoldable because Nf ≤Nc nevertheless
easily fold when made by hand10,11,29,30. In essence, the discrepancy
originates when origami structures are modelled as a series of rigid
polyhedra connected by freely rotating torsional hinges. Although
rigid foldability appears to be a reasonable simplification for the

folding behaviour, the fact that real materials can bend is a critical
piece of missing phenomenology. In fact, there is at present no
general approach for understanding and predicting the mechanical
behaviour of origami structures when their material properties are
taken into account. Although numerous examples of unfoldable
crease patterns exist, we here investigate the mechanics of a single
unit from the square-twist origami tessellation1 (Fig. 1a,b; see also
Supplementary Movies 1 and 2 and Supplementary Fig. 1). Even in
this simple test case, we find a rich set of mechanical behaviours
that illuminate general principles applicable to any material with
measurably different energy scales separating overconstrained and
underconstrained states.

The square-twist pattern consists of alternating square and
rhombus facets, characterized by the length L and plane angle φ, in
which the internal edges are either allmountain or valley creases. An
analysis of the geometric constraints reveals the pattern is isostatic.
Essentially, this arises from the four-fold rotational symmetry of
the structure, which imposes a cyclic set of constraints on the
four creases that define the central square facet (Supplementary
Information). Although this observation indicates that the crease
pattern should not be foldable, a trigonometric analysis of the
normalized edge-to-edge distance x/L shows that the square twist
allows two isolated states corresponding to the fully unfolded
and folded configurations (Fig. 1c, upper and lower black lines,
respectively, and Supplementary Fig. 2).

Experiments measuring x/L on folded paper sheets without
external loading (Methods; Fig. 1c, red data points) indicate
qualitatively different behaviour than the crease geometry’s naive
prediction of rigidity. Instead, below a critical plane angle
φc=(25±2.5)◦, the distinction between folded and unfolded
configurations is not observed; the structure is monostable with
an intermediate value of x/L (for example, Fig. 1b, side views).
Above φc, both folded and unfolded configurations are observed;
the folded configuration exhibits x/L values that nearly match
the prediction, whereas the unfolded configuration exhibits x/L
values that are smaller than predicted for ideal sheets (Fig. 1b,
side view, and Fig. 1c). Although the crease pattern does not
admit solutions between folded and unfolded branches for any
φ>0◦, direct observations during the folding process reveal that
the facets bend by a finite amount rather than remaining flat.
These deformations are additional DOFhidden from the bare crease
pattern, and are essential for foldability as they enable the structure
to access otherwise geometrically forbidden configurations. It is the
combination of this facet bending and the non-zero rest angles of
the creases, which are plastically set when the sheet is fully folded,
that gives rise to the observed intermediate configurations.
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Figure 1 | Schematics and photographs introducing the square twist’s
essential geometric properties and mechanical characteristics. a, The
square-twist folding pattern is shown with the edges in black, mountain
creases in red, and valley creases in blue. The geometry is defined by the
length, L, and the plane angle, φ. The Euclidean distance, x, between the two
yellow stars quantifies the macroscopic configuration between folded and
unfolded states. b, Photographs of a square twist with φ=45◦ illustrate
out-of-plane deformations, and the stars define x when the square twist is
unfolded and folded. c, Comparison of geometric predictions to
experimental measurements for x/L as a function of φ based purely on the
crease pattern reveals qualitative disagreement. The former has bistable
solutions for all non-zero φ corresponding to folded and unfolded
configurations (black lines), and no permissible configurations between
these two states (lightly shaded region between lines). Experimental
measurements, however, exhibit regions with mono- and bistable solutions
depending on φ (red points, errors are shaded bands).

To study the unfolding behaviour, we measured the mechanical
response of the folded square twist to uniaxial tension. We observe
remarkably different behaviours for φ above and below the critical
plane angle φc. Below φc, the structure smoothly opens and closes,
as indicated by the folding order parameter δ (Fig. 2a inset and blue
line; Supplementary Movie 1), whereas above φc a rapid snapping
action between folded and unfolded states is observed, as indicated
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Figure 2 | Experimental strain-controlled mechanical data studying the
transition between mono- and bistability in square twists.
a, Measurements of the folding order parameter, δ, show smooth
continuous behaviour for φ= 10◦ and an abrupt discontinuous jump for
φ=45◦. The inset illustrates the definition of δ, and photographs show
points of interest on the red curve. b, Measurements of the tensile force F
as a function of the normalized extension,1x/L, reveal mechanical
bistability between folded and unfolded configurations for φ=45◦ and
monostability for φ= 10◦. The inset shows schematics of the experiment,
definition of1x, and location of the load cell. c, Measurements of the
tensile force, F(φ,1x/L), normalized by the sheet’s torsional bending
sti�ness, kb, show the transition between mono- and bistability. White
circles indicate mechanically stable values of1x/L, and black lines show
predicted solutions based on a crease geometry with rigid facets. Note that
these predictions do not permit solutions anywhere o� the lines.
Furthermore, these data closely correspond to the measurements in Fig. 1c,
where load-free stable values of x were plotted as red dots, and where the
predicted solutions based on a rigid-facet geometry were similarly shown
as black lines.

by a jump in δ (Fig. 2a, red line; Supplementary Movie 2). In the
latter case, where φ>φc, both folded and unfolded configurations
are stable to small external loading, whereas intermediate config-
urations are unstable and quickly snap to one state or the other.
Displacement-controlled measurements of the force F as a function
of φ and normalized extension 1x/L also showed qualitatively
different behaviour above and below φc (Fig. 2b and inset). Here, the
extension1x is the change in x at a given force F along the direction
of loading (Methods). For structures with φ <φc the force curves
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Figure 3 | Simulation results for the square twist with non-rigid facets.
a, The square-twist crease diagram has been modified with ‘virtual creases’
that mimic the behaviour of facet bending, as indicated by thin lines. b, 3D
renderings from the simulation illustrate the unfolding sequence. Blue
arrows indicate the external load corresponding to strain-controlled
conditions. c, Simulation data where each line represents the mechanically
stable extensions as a function of geometry for various material properties.
The data reveal a critical angle φc (red dots) that varies with the
bending-to-crease energy ratio kb/kc. For kb/kc= 1, monostability is
observed for all φ, whereas for kb/kc= 103 bistability is found for all φ.
Between these limits, a bifurcation separating the monostable (φ<φc) and
bistable (φ>φc) limits of the phase transition can be found. d, Examining
the distribution of energy between crease and bending degrees of
freedom for kb/kc= 102 as a typical example, we see that the
contribution from bending has an energy barrier for intermediate values of
1x/L that increases in magnitude with φ. Conversely, the energetic
contribution from crease opening essentially increases monotonically with
1x/L for all φ. In both energy plots, the band thickness indicates the
simulation uncertainty.

increase monotonically, whereas structures with φ > φc exhibit
force curves with regions of negative slope, indicating mechanical
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Figure 4 | A sub-millimetre-scale self-folding polymer-gel version of the
square twist is used to verify the geometric nature of bistability in
stress-controlled conditions. a, Schematic of the trilayer structure
(dimensions not to scale). Folding is actuated by a temperature-dependent
swelling of the middle (pink) layer. Open slits patterned in the top and
bottom layers (blue) induce mountain and valley creases, respectively,
when viewed from above. b, Optical micrograph of a square twist released
in an aqueous medium at 60◦C. c, Measurements of square-twist opening
as a function of temperature demonstrate hysteretic folding/unfolding
behaviour for φ>φc and non-hysteretic folding/unfolding for φ<φc. In this
case, 15◦<φc<30◦. Solid lines (unfolding) correspond to heating, and
dashed lines (folding) to cooling. Inset micrographs show a structure with
φ=45◦ at the indicated measurement points. d, Measurements of opening
as a function of temperature for the standard square twist compared to a
version with creases added where bending would otherwise occur. The
additional DOF a�orded by setting kb/kc . 1 entirely remove hysteretic
folding behaviour.

instability. To determine the force landscape that drives transitions
from the folded to the unfolded state, we measured the tensile force
normalized by the sheet’s torsional bending stiffness, kb (Fig. 2c,
Supplementary Figs 3 and 4). We find that the force barrier between
these states increases in magnitude with φ, hinting at an underlying
mechanism for bistability. In particular, facet bending is localized to
the rhombi short diagonals, forming ‘virtual creases’ with a deflec-
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tion angle ψ and energy ∼Lkb sin(φ/2)ψ 2. Because the length of
these diagonals increases with φ, the force barrier increases as well.

To further investigate this facet-bending mechanism, we
developed a numerical simulation of the unfolding behaviour
under uniaxial tension that calculates the configurationminimizing
the facet-bending and crease-unfolding energies for a given φ and
1x/L (Fig. 3a,b, Methods). From these calculations, we determine
the energetic minima, which correspond to mechanically stable
states, for different ratios of the bending and crease torsional spring
constants, kb/kc (Fig. 3c). For kb/kc≤1, monostability was observed
for all geometries, whereas for kb/kc≥103, all geometries exhibited
bistability. Between these limits, we found a critical plane angle φc
marking a bifurcation between mono- and bistability that varied
with kb/kc. When compared with the experimental phase diagram
(Fig. 2c), these calculations predict 10 < kb/kc < 100, which is
consistent with measurements that found kb/kc' 36 for the paper
used in experiments (Supplementary Information).

Examining the internal distribution of energy by separating
the dimensionless bending energy Ub/kbL from the dimensionless
crease energy Uc/kbL sheds light on how different DOF are
interacting to tune the bifurcation (Fig. 3d). For example, taking
kb/kc= 102, where φc≈ 20◦, we see that the system’s total bending
energy has an energy barrier at intermediate values of1x/L whose
magnitude increases with φ. The total crease energy, on the other
hand, monotonically increases with 1x/L for all φ. Whether this
monotonic rise in crease energy is high enough to overcome the
energy barrier that arises from hidden bending DOF determines if
the system is mono- or bistable (Supplementary Fig. 5).

Collectively, these results provide a geometric understanding
for the mechanical bistability of the square twist and, as such,
should translate to any thin sheet folded according to this crease
pattern. Although our experiments were performed with strain-
controlled loading, we predict that the observed bifurcation will
give rise to a hysteretic behaviour under stress-controlled loading
that can be tuned by both φ and kb/kc. To test this prediction, we
used a micropatterned gel-trilayer version of the square twist with
L=200µm (Fig. 4a,b; Methods). Here, differential swelling between
gel layers is used to create internal stresses that fold and unfold
the structure as the temperature T is varied. For this system, we
estimate kb/kc ∼ 102 (Supplementary Information), and therefore
from simulationswe expectφc≈20◦ (Fig. 3c). Imaging a square twist
with φ=45◦ as the temperature is quasi-statically varied reveals the
expected hysteresis (Fig. 4c, dark green line). As predicted, when φ
is decreased to 30◦ the hysteresis is reduced (medium green line),
and ultimately vanishes for φ= 15◦ (light green line). Our results
with paper models and simulations also suggest that hysteretic
folding behaviour can be removed if kb/kc . 1. This scenario can
be realized in the gel sheets by modifying and fully triangulating
the crease pattern (for example, Fig. 3a), effectively placing creases
where bending would otherwise occur. Indeed, we find for φ=45◦
that the addition of these creases removes the hysteresis (Fig. 4d).
These experiments clearly illustrate the first-order properties of
the transition between folded and unfolded states that arises from
hidden bending DOF in the square twist (Supplementary Fig. 6).

Although this work shows howhiddenDOF can be used to create
non-trivial features in an origami structure’s configuration space,
we envisage that the tunable and scale-free nature of the square
twist’s bistability should make it a useful design for robotic grippers,
microfluidic devices and even wearable exoskeletons. Moreover,
because the square twist can form 2D tessellations, it should be
possible to spatially vary the unit-cell geometry to create origami
mechanical metamaterials. For example, in analogy with secondary
structures in polymers that provide hidden length31, the ability of the
pattern to resist deformation up to a predetermined force threshold
can be taken advantage of to make materials with extremely high
toughness. Such devices would be capable of large bulk strain

without fracture by absorbing energy in a predetermined pattern
of sequentially opening square-twist unit cells. More broadly, the
possibility of alternative geometries (Supplementary Fig. 7) and
additional hiddenDOF—such as facet stretching, facet shearing and
crease torquing—suggests that an even richer configuration space
may be hiddenwith thesemore energetically expensive deformation
modes. For example, these ideas are found in the mechanics of
thin shells, where bending and stretching energy barriers have been
shown to be modified by the introduction of creases32, leading to
a broad range of multistable behaviours. Thus, the geometry of
creased sheets offers a simple experimental platform to probe the
mechanical behaviour of a wider class of constraint-based materials
and the consequences of energy-scale dependent DOF.

Methods
Sample fabrication and characterization. Digital CAD software and a laser
cutter were used to fabricate square-twist structures from 120 lb paper (Radiance
120 lb super smooth card stock, Beckett Expressions). Creases were patterned by
cutting perforated lines with equal lengths of material and gaps, then folded by
hand with a Lineco bone scorer to be mountain or valley according to the crease
assignment (Fig. 1a). For these samples, we set L=2.54 cm and varied φ from 10◦
to 45◦ in increments of 5◦. The lower bound is the limit of what can be
reasonably folded from this material, although a theoretical limit of 0◦ is where
the crease pattern is no longer well defined owing to overlapping mountain and
valley curves. The upper bound is set by self-intersection, which prevents the
structure from folding flat for φ>45◦. Samples used throughout this work were
folded and unfolded before mechanical testing, thus the unfolded stable
configuration retains some folding along the creases owing to plastic deformation
and hence responds differently than a ‘pristine’ sheet that has never been folded.

To quantify a square twist’s configuration in the absence of load, each sample
was first folded flat, then held to a calliper ruler to measure the Euclidean
distance x (Fig. 1a). Subsequently, each sample was unfolded, flattened on a table
under 2 s of compression applied by hand, and the distance x remeasured.

A custom-built mechanical tester previously described5 was used to measure
the mechanical properties of square twists under tension. Samples were fixed to
the testing device and suspended in air with small tabs of gaffing tape. Although
this pre-loaded the samples with minor tension at zero extension (Fig. 2a), this
approach prevented any interactions with the lower surface of the testing
apparatus, which would otherwise interfere with the unfolding process. In a
typical experiment, the distance between loading plates and load cell force data
were simultaneously recorded by a single custom MATLAB program, and the
data stored for later analysis. Furthermore, the maximum experimental extension
was kept smaller than the theoretical limits (Fig. 2c black lines) to reduce risk of
tearing samples apart. Sample testing was video recorded with a Canon
Powershot camera filming at 7.5 FPS. Standard image analysis techniques were
used to measure the order parameter for folding, δ, as a function of the
normalized extension 1x/L, which as described in the main text is measured
from the mechanically equilibrated folded state (Fig. 1c lower branch of red data).

Simulated square twists. To explore how material properties, and in particular
finite bending stiffness of the flat facets, influences mechanical behaviour of the
system, we developed a numerical simulation of the square twist’s folding
behaviour. In it, we constrained each of the 16 facet corners to have a fixed
distance from their neighbouring corners according to the crease pattern. Crease
and facet bending deformations were then assigned an elastic energy given by:

Utotal = Ucrease+Ubend

=
L
2

kc 12∑
i=1

(θi−θ0)
2
+kb

9∑
j=1

λjψ
2
j

 (1)

where

λj=

{√
2 for square facets,

2sin(φ/2) for rhombus facets

In this expression, the first term is the crease energy, which is proportional to the
torsional elastic constant kc times the crease length L, and is a sum over the 12
individual creases. It is also a function of the crease angle θ , determined from a
dot product of two adjacent facet normals, minus an equilibrium value θ0. This
represents the fact that, once made, creases no longer lay flat. A value of θ0=10◦
was used here, which is consistent with our experimental samples. The second
term is the facet-bending energy, which is proportional to the torsional elastic
constant kb times the length of the bend λjL, and is a sum over the nine indicated
facet diagonals (Fig. 3a). It is a function of the bending angle ψj, which, unlike
creases, is zero in a stress free state. Like the crease DOF, these bending DOF are
also calculated from the dot product of the facet normals.
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Specifying φ and a target 1x/L, equation (1) was numerically minimized

using the Levenberg–Marquardt algorithm in MATLAB, where the target 1x/L
was incremented from 0 to its maximum value in 91 steps. This process was
repeated 20 times with initial conditions generated from a geometric
interpolation between the folded and unfolded states that did not preserve facet
areas. In each realization, the facet corners were perturbed along x ,y and z by an
amount that was uniformly distributed over the range given by ±L/10. In this
way, we used semi-random initial conditions to form an ensemble-averaged
solution that minimized equation (1) and satisfied the crease pattern’s geometric
constraints. We then averaged the facet bending angles of the ensemble-averaged
solution, producing an overall average rhombus bending angle ψrhomb, an overall
average square-facet bending angle ψsqr, and a centre square-facet bending angle
ψctr (Supplementary Information).

Self-folding gel fabrication and imaging. The self-folding version of the square
twist consists of a temperature-responsive hydrogel film capped on both the top
and bottom surfaces by rigid patterned layers. Although the method is described
elsewhere33, we provide a brief summary here. First, we spin-coated a layer of
ultraviolet-crosslinkable poly(p-methyl styrene) (PpMS) with a thickness of
50 nm. Using a maskless lithographic method, a pattern of stripes corresponding
to the valley creases was used to define regions where the PpMS layer was
crosslinked. Next, the temperature-responsive poly(N -isopropyl
acrylamide-co-sodium acrylate) (PNIPAM) polymer was deposited and
crosslinked on the PpMS layer with a thickness of 1.5 µm. Finally, a second layer
of PpMS with a thickness of 50 nm was deposited and crosslinked with a pattern
corresponding to the mountain creases. This trilayer structure then consisted of
two thin rigid outer layers encompassing a middle layer that swells with
temperature. To prevent adhesion between the hydrophobic PpMS panels in the
folded state, a 10-nm polyelectrolyte layer was coated on both outer surfaces of
PpMS by spin-coating a photo-crosslinkable poly(sulphopropyl methacrylate)
copolymer and crosslinking with ultraviolet light. On swelling in an aqueous
buffer, stresses are developed within the middle hydrogel layer, causing the
bilayer crease-like regions to bend to an angle programmed by the width of the
open stripe in the capping PpMS layer. Trilayer regions, on the other hand,
remain flat like facets. For the square-twist pattern, each crease segments is
programmed to fold to either ±π at room temperature, corresponding to the flat
folded state.

Full triangulation of the fold pattern was accomplished by patterning open
stripes in both the top and bottom rigid films where bending was observed in the
paper experiments and numerical simulations. Thus, these regions had only a
single layer gel film that was not programmed to fold, but instead offered much
lower bending resistance than the trilayer facet regions.

To measure the opening x , each sample was placed in an aqueous medium
and observed with epi-fluorescence microscopy through the temperature range 20
to 60 ◦C. A heat stage was used to control the temperature (Zeiss Tempcontrol
37-2 digital), which was varied in 5 ◦C increments. At least 30min at each
temperature was allowed for the gel to swell to equilibrium. The folding/unfolding
process, therefore, was under quasi-static stress-controlled conditions. 3D images
of polymer square twist were reconstructed using ImageJ from image stacks
collected using a laser scanning confocal fluorescence microscope (Zeiss LSM 510
META), with the refractive index of the aqueous medium corrected for.

Received 28 November 2014; accepted 30 January 2015;
published online 9March 2015; corrected after print 31 March 2015

References
1. Greenberg, H., Gong, M., Magleby, S. & Howell, L. Identifying links between

origami and compliant mechanisms.Mech. Sci. 2, 217–225 (2011).
2. Song, J., Chen, Y. & Lu, G. Axial crushing of thin-walled structures with

origami patterns. Thin. Walled Struct. 54, 65–71 (2012).
3. Schenk, M. & Guest, S. D. Geometry of miura-folded metamaterials. Proc. Natl

Acad. Sci. USA 110, 3276–3281 (2013).
4. Wei, Z. Y., Guo, Z. V., Dudte, L., Liang, H. Y. & Mahadevan, L. Geometric

mechanics of periodic pleated origami. Phys. Rev. Lett. 110, 215501 (2013).
5. Silverberg, J. L. et al. Using origami design principles to fold reprogrammable

mechanical metamaterials. Science 345, 647–650 (2014).
6. Waitukaitis, S., Menaut, R., Chen, B. G-g. & van Hecke, M. Origami

multistability: From single vertices to metasheets. Phys. Rev. Lett. 114,
055503 (2015).

7. Lv, C., Krishnaraju, D., Konjevod, G., Yu, H. & Jiang, H. Origami based
mechanical metamaterials. Sci. Rep. 4, 5979–5981 (2014).

8. Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P. & Howell, L. L. Waterbomb
base: A symmetric single-vertex bistable origami mechanism. Smart Mater.
Struct. 23, 094009 (2014).

9. Huffman, D. A. Curvature and creases: A primer on paper. IEEE Trans.
Comput. 25, 1010–1019 (1976).

10. Tachi, T. in Proceedings of the International Association for Shell and Spatial
Structures (IASS)Symposium: Evolution and Trends in Design, Analysis and
Construction of Shell and Spatial Structures (eds Domingo, A. & Lazaro, C.)
2287–2294 (Editorial Universitat Politècnica de València,
2009); http://go.nature.com/HbzSH1

11. Hull, T. Project Origami: Activities for Exploring Mathematics
(CRC Press, 2012).

12. Thiria, B. & Adda-Bedia, M. Relaxation mechanisms in the unfolding of thin
sheets. Phys. Rev. Lett. 107, 025506 (2011).

13. Dias, M. A., Dudte, L. H., Mahadevan, L. & Santangelo, C. D. Geometric
mechanics of curved crease origami. Phys. Rev. Lett. 109, 114301 (2012).

14. Lechenault, F., Thiria, B. & Adda-Bedia, M. Mechanical response of a creased
sheet. Phys. Rev. Lett. 112, 244301 (2014).

15. Feng, S. & Sen, P. N. Percolation on elastic networks: New exponent and
threshold. Phys. Rev. Lett. 52, 216–219 (1984).

16. Broedersz, C. P., Mao, X., Lubensky, T. C. & MacKintosh, F. C. Criticality and
isostaticity in fibre networks. Nature Phys. 7, 983–988 (2011).

17. Silverberg, J. L. et al. Structure-function relations and rigidity percolation in the
shear properties of articular cartilage. Biophys. J. 107, 1–10 (2014).

18. Sun, K., Souslov, A., Mao, X. & Lubensky, T. Surface phonons, elastic response,
and conformal invariance in twisted kagome lattices. Proc. Natl Acad. Sci. USA
109, 12369–12374 (2012).

19. Kane, C. & Lubensky, T. Topological boundary modes in isostatic lattices.
Nature Phys. 10, 39–45 (2013).

20. Chen, B. G-g., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons
in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111,
13004–13009 (2014).

21. Paulose, J., Chen, B. G-g. & Vitelli, V. Topological modes bound to dislocations
in mechanical metamaterials. Nature Phys. 11, 153–156 (2015).

22. Liu, A. J. & Nagel, S. R. Nonlinear dynamics: Jamming is not just cool any
more. Nature 396, 21–22 (1998).

23. Keys, A. S., Abate, A. R., Glotzer, S. C. & Durian, D. J. Measurement of growing
dynamical length scales and prediction of the jamming transition in a granular
material. Nature Phys. 3, 260–264 (2007).

24. Van den Wildenberg, S., van Loo, R. & van Hecke, M. Shock waves in weakly
compressed granular media. Phys. Rev. Lett. 111, 218003 (2013).

25. Thorpe, M. Continuous deformations in random networks. J. Non-Cryst. Solids
57, 355–370 (1983).

26. Heyman, J. The Science of Structural Engineering (World Scientific, 1999).
27. Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames.

Lond. Edinb. Dubl. Phil. Mag. J. Sci. 27, 294–299 (1864).
28. Calladine, C. Buckminster Fuller’s ‘‘tensegrity’’ structures and Clerk Maxwell’s

rules for the construction of stiff frames. Int. J. Solids Struct. 14,
161–172 (1978).

29. Demaine, E. D., Demaine, M. L., Hart, V., Price, G. N. & Tachi, T. (Non)
existence of pleated folds: How paper folds between creases. Graphs
Combinator. 27, 377–397 (2011).

30. Hull, T. C. Origami3: Proceedings of the Third International Meeting of Origami
Science, Mathematics, and Education 29–38 (A K Peters, 2002).

31. Fantner, G. E. et al. Sacrificial bonds and hidden length: Unraveling molecular
mesostructures in tough materials. Biophys. J. 90, 1411–1418 (2006).

32. Bende, N. P. et al. Geometrically controlled snapping transitions in shells with
curved creases. Preprint at http://arxiv.org/abs/1410.7038 (2014).

33. Na, J-H. et al. Programming reversibly self-folding origami with
micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27,
79–85 (2015).

Acknowledgements
The authors thank J. Mosely, U. Nguyen, B. Johnson, B. Parker and M. Schneider for
artistic inspiration, as well as O. Vincent, N. Bende, C-K. Tung, S. Waitukaitis and the
Cohen lab for useful discussions. We also thank F. Parish for assistance with the laser
cutter. This work was funded by the National Science Foundation through award EFRI
ODISSEI-1240441.

Author contributions
J.L.S., J-H.N., R.C.H. and I.C. designed the research; J.L.S., J-H.N. and A.A.E. conducted
the research and interpreted the results; B.L., T.C.H., C.D.S., R.J.L., R.C.H. and I.C.
supervised the research and interpreted the results; J.L.S., J-H.N., A.A.E., T.C.H., R.J.L.
and I.C. prepared the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to J.L.S.

Competing financial interests
The authors declare no competing financial interests.

NATUREMATERIALS | VOL 14 | APRIL 2015 | www.nature.com/naturematerials 393

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nmat4232
http://go.nature.com/HbzSH1
http://arxiv.org/abs/1410.7038
http://www.nature.com/doifinder/10.1038/nmat4232
http://www.nature.com/reprints
www.nature.com/naturematerials


In the version of this Letter originally published, the authors Jesse L. Silverberg and Jun-Hee Na should have been denoted as having 
contributed equally to this work. This has now been corrected in the online versions of the Letter. 

Origami structures with a critical transition to bistability arising from hidden degrees  
of freedom
Jesse L. Silverberg, Jun-Hee Na, Arthur A. Evans, Bin Liu, Thomas C. Hull, Christian D. Santangelo, Robert J. Lang,  
Ryan C. Hayward and Itai Cohen

Nature Materials 14, 389–393 (2015); published online 9 March 2015; corrected after print 31 March 2015.

CORRIGENDUM

© 2015 Macmillan Publishers Limited. All rights reserved


	Origami structures with a critical transition to bistability arising from hidden degrees of freedom
	Methods
	Sample fabrication and characterization.
	Simulated square twists.
	Self-folding gel fabrication and imaging.

	Figure 1 Schematics and photographs introducing the square twist's essential geometric properties and mechanical characteristics.
	Figure 2 Experimental strain-controlled mechanical data studying the transition between mono- and bistability in square twists.
	Figure 3 Simulation results for the square twist with non-rigid facets.
	Figure 4 A sub-millimetre-scale self-folding polymer-gel version of the square twist is used to verify the geometric nature of bistability in stress-controlled conditions.
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests

